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Variance

Question: Let us return once again to the question of how many heads in a typical sequence of n coin flips.
Recall that we used the Galton board to visualize this as follows: consider a token falling through the Galton
board, deflected randomly to the right or left at each step. We think of these random deflections as taking
place according to whether a fair coin comes up heads or tails. The expected position of the token when it
reaches the bottom is right in the middle, but how far from the middle should we typically expect it to land?

Denoting a right-move by +1 and a left-move by —1, we can describe the probability space here as the set
of all words of length n over the alphabet {+1}, each having equal probability % Let the r.v. X denote our
position (relative to our starting point 0) after n moves. Thus

X=Xi+Xo+ -+ Xy,

+1 if ith toss is Heads;

where X; = )
—1 otherwise.

Now obviously we have E(X) = 0. The easiest way to see this is to note that E(X;) = (3 x 1)+ (4 x (=1)) =
0, so by linearity of expectation E(X) =Y, E(X;) = 0. But of course this is not very informative, and is

due to the fact that positive and negative deviations from O cancel out.

What the above question is really asking is: What is the expected value of |X|, the distance of the distance
from 0? Rather than consider the r.v. [X|, which is a little awkward due to the absolute value operator, we
will instead look at the r.v. X2. Notice that this also has the effect of making all deviations from 0 positive,
so it should also give a good measure of the distance traveled. However, because it is the squared distance,
we will need to take a square root at the end.

Let’s calculate E(X?):
E(X?) =E((Xi + X2+ +X,)?)

=E(L; X7 + Lz XiX))

=YL B(X7) + Lig B(XX;)
In the last line here, we used linearity of expectation. To proceed, we need to compute E(X?) and E(X;X;)
(fori# j). Let’s consider first X?. Since X; can take on only values +1, clearly X? = 1 always, so E(X?) = 1.
What about E(X;X;)? Well, X;X; = +1 when X; = X; = +1 or X; = X; = —1, and otherwise X;X; = —1.
Also,

PI‘[(X,' :Xj = —I—I)\/(Xl' :Xj = —1)] :Pr[Xi :Xj = —l—l]—l—PI‘[Xl' :Xj = —1]

|
I

+
[

|

so X;X; = 1 with probability % In the above calculation we used the fact that the events X; = +1 and
X; = +1 are independent, so Pr[X; = X; = +1] = Pr[X; = +1] x Pr[X; = +1] =  x 1 = { (and similarly for
Pr[X; = X; = —1]). Therefore X;X; = —1 with probability  also. Hence E(X;X;) = 0.
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Plugging these values into the above equation gives
EX)=(mx1)+0=n.

So we see that our expected squared distance from 0 is n. One interpretation of this is that we might expect
to be a distance of about \/n away from 0 after n steps. However, we have to be careful here: we cannot
simply argue that E(]X|) = \/E(X?) = /n. (Why not?) We will see later in the lecture how to make precise
deductions about |X | from knowledge of E(X?).

For the moment, however, let’s agree to view E(X?) as an intuitive measure of “spread” of the r.v. X. In
fact, for a more general r.v. with expectation E(X) = u, what we are really interested in is E((X — u)?), the
expected squared distance from the mean. In our random walk example, we had u = 0, so E((X — u)?) just
reduces to E(X?).

Definition 13.1 (variance): For a r.v. X with expectation E(X) = u, the variance of X is defined to be
Var(X) = E((X — p)?).

The square root o(X) := 1/ Var(X) is called the standard deviation of X.

The point of the standard deviation is merely to “undo” the squaring in the variance. Thus the standard
deviation is “on the same scale as” the r.v. itself. Since the variance and standard deviation differ just by a
square, it really doesn’t matter which one we choose to work with as we can always compute one from the
other immediately. We shall usually use the variance. For the random walk example above, we have that
Var(X) = n, and the standard deviation of X, 6(X), is y/n.

The following easy observation gives us a slightly different way to compute the variance that is simpler in
many cases.

Theorem 13.1: For a r.v. X with expectation E(X) = u, we have Var(X) = E(X?) — u?.

Proof: From the definition of variance, we have
Var(X) = B((X —p)?) = B(X> = 2uX + p*) = E(X?) —2uB(X) + p* = E(X?) — pi*.

In the third step here, we used linearity of expectation. O

Examples

Let’s see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from an earlier lecture that E(X) = %
So we just need to compute E(X?), which is a routine calculation:

1 91
E(X?) = ¢ (2422432 +47 452+ 6%) = <
Thus from Theorem 16.1
91 49 35
_ 2y _ 2_21 2
Var(X) = E(X°) — (E(X)) c 11
More generally, if X is a random variable that takes on values 1,...,n with equal probability 1/n (i.e.

X has a uniform distribution), the mean, variance and standard deviation of X are:
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(You should verify these.)

2. Number of fixed points. Let X be the number of fixed points in a random permutation of # items (i.e.,
the number of students in a class of size n who receive their own homework after shuffling). We saw
in an earlier lecture that E(X) = 1 (regardless of n). To compute E(X?), write X = X; + X, +--- + X,

1 ifiis afixed point;
where X; = )

0 otherwise
Then as usual we have .

E(X?) = Y E(X) + L E(XX)). (1)
i=1 i#)

Since X; is an indicator r.v., we have that E(X?) = Pr[X; = 1] = 1. Since both X; and X; are indicators,
we can compute E(X;X;) as follows:

E(X;X;) = Pr[X; = 1 AX; = 1] = Pr[both i and j are fixed points] = 1)
n(n—

[Check that you understand the last step here.] Plugging this into equation (1) we get

E(X?) :(nx%)—i—(n(n—l) xﬁ): 1+1=2.
Thus Var(X) = E(X?) — (E(X))? =2—1 = 1. Le., the variance and the mean are both equal to 1.
Like the mean, the variance is also independent of n. Intuitively at least, this means that it is unlikely
that there will be more than a small number of fixed points even when the number of items, n, is very
large.

Independent Random Variables

Independence for random variables is defined in analogous fashion to independence for events:

Definition 13.2 (independent r.v.’s): Random variables X and Y on the same probability space are said
to be independent if the events X = a and Y = b are independent for all values a,b. Equivalently, the joint
distribution of independent r.v.’s decomposes as

PriX =a,Y =b] =Pr[X =a|Pt[Y =b| Va,b.

Mutual independence of more than two r.v.’s is defined similarly. A very important example of independent
r.v.’s is indicator r.v.’s for independent events. Thus, for example, if {X;} are indicator r.v.’s for the ith toss
of a coin being Heads, then the X; are mutually independent r.v.’s.

One of the most important and useful facts about variance is if a random variable X is the sum of independent
random variables X = Xj + ---X,,, then its variance is the sum of the variances of the individual r.v.’s. In
particular, if the individual r.v.’s X; are identically distributed, then Var(X) = Y, Var(X;) = n - varX;. This
means that the standard deviation 6(X) = \/(n)o(X;). Note that by contrast, the expected value E[X] =
n-E[X;]. Intuitively this means that whereas the average value of X grows proportionally to 7, the spread of
the distribution grows proportionally to y/n. In other words the distribution of X tends to concentrate around
its mean. Let us formalize these ideas:
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Theorem 13.2: For any random variable X and constant ¢, we have
Var(cX) = ¢*Var(X).
And for independent random variables X, Y, we have

Var(X +Y) = Var(X) + Var(Y).

Theorem 13.3: For independent random variables X,Y, we have E(XY) = E(X)E(Y).
Proof: We have

EXY) = Y )Y abxPrX =aY =b]
a b

= Y Y abxPrix =a] x Pr[y = b]
a b

= <Za x Pr[X = a]> X (Zb x PrlY = b])
a b
= E(X)xE(Y),
as required. In the second line here we made crucial use of independence. O

We now use the above theorem to conclude the nice property of the variance of independent random variables
stated in the theorem above, namely that for independent random variables X and Y, Var(X +Y) = Var(X) +
Var(Y):

Proof: From the alternative formula for variance in Theorem 16.1, we have, using linearity of expectation
extensively,

Var(X +Y) = E((X+Y)?)—E(X+Y)?

— E(X?)4+E(Y?) +2E(XY) — (E(X) +E(Y))?
= (E(X*) —E(X)*) + (E(r*) —E(Y)?) + 2(E(XY) — E(X)E(Y))
= Var(X)+ Var(Y)+2(E(XY) —E(X)E(Y)).

Now because X ,Y are independent, by Theorem 18.1 the final term in this expression is zero. Hence we get
our result. O

Note: The expression E(XY) —E(X)E(Y) appearing in the above proof is called the covariance of X and Y,
and is a measure of the dependence between X,Y. It is zero when X,Y are independent.

It is very important to remember that neither of these two results is true in general, without the assumption
that X,Y are independent. As a simple example, note that even for a 0-1r.v. X with Pr[X = 1] = p, E(X?) = p
is not equal to E(X)? = p? (because of course X and X are not independent!). This is in contrast to the case
of the expectation, where we saw that the expectation of a sum of r.v.’s is the sum of the expectations of the
individual r.v.’s always.

Example

Let’s return to our motivating example of a sequence of n coin tosses. Let X the the number of Heads in n
tosses of a biased coin with Heads probability p (i.e., X has the binomial distribution with parameters n, p).
1 if ith toss is Head;

We already know that E(X) = np. Asusual, let X = X; + X, + - - - + X, where X; = _
0 otherwise
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We can compute Var(X;) = E(X?) — E(X;)> = p— p*> = p(1 — p). So Var(X) = np(1 — p).
As an example, for a fair coin the expected number of Heads in n tosses is 7, and the standard deviation

is % Note that since the maximum number of Heads is n, the standard deviation is much less than this
maximum number for large n. This is in contrast to the previous example of the uniformly distributed
random variable, where the standard deviation

o(X)=+/(n2—1)/12~n/V12

is of the same order as the largest value n. In this sense, the spread of a binomially distributed r.v. is much
smaller than that of a uniformly distributed r.v.
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