CS 70 Discrete Mathematics and Pro]oalaility Theory
Fall 2013 Vazirani Lecture 14

Che]oyshev’s Inequality

We have seen that, intuitively, the variance (or, more correctly the standard deviation) is a measure of
“spread”, or deviation from the mean. Our next goal is to make this intuition quantitatively precise. What
we can show is the following:

Theorem 14.1: [Chebyshev’s Inequality] For a random variable X with expectation E(X) = u, and for any
o >0,
Var(X)

PrX — | > o] < =0

Before proving Chebyshev’s inequality, let’s pause to consider what it says. It tells us that the probability of

any given deviation, ¢, from the mean, either above it or below it (note the absolute value sign), is at most

Vd;—(zx). As expected, this deviation probability will be small if the variance is small. An immediate corollary

of Chebyshev’s inequality is the following:
Corollary 14.2: For a random variable X with expectation E(X) = u, and standard deviation o = / Var(X),
1
Pr{[X —pu| = o] < B
Proof: Plug @ = o into Chebyshev’s inequality. O

So, for example, we see that the probability of deviating from the mean by more than (say) two standard
deviations on either side is at most %. In this sense, the standard deviation is a good working definition of
the “width” or “spread” of a distribution.

We should now go back and prove Chebyshev’s inequality. The proof will make use of the following simpler
bound, which applies only to non-negative random variables (i.e., r.v.’s which take only values > 0).

Theorem 14.3: [Markov’s Inequality] For a non-negative random variable X with expectation E(X) = u,

and any o > 0,
E(X

Proof: From the definition of expectation, we have
E(X)=Y,a xPr[X =q]
> Y >qaxPriX =dj
Z OCZaZa Pr[X == a]
=aPr[X > a.

The crucial step here is the second line, where we have used the fact that X takes on only non-negative
values. (Why is this step not valid otherwise?) O
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There is an intuitive way of understanding Markov’s inequality through an analogy of a seesaw. Imagine
that the distribution of a non-negative random variable X is resting on a fulcrum, u = E(X). We are trying
to find an upper bound on the percentage of the distribution which lies beyond ku, i.e. Pr[X > ku|. In other
words, we seek to add as much weight m; as possible on the seesaw at k. while minimizing the effect it has
on the seesaw’s balance. This weight will represent the upper bound we are searching for. To minimize the
weight’s effect, we must imagine that the weight of the distribution which lies beyond ku is concentrated at
exactly ku. However, to keep things stable and maximize the weight at ki, we must add another weight m
as far left to the fulcrum as we can so that m; is as large as it can be. The farthest we can go to the left is
0, since X is non-negative. Moreover, the two weights m; and m; must add up to 1, since they represent the
area under the distribution curve:
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Figure 1: Markov’s inequality interpreted as balancing a seesaw.

Since the lever arms are in the ratio k — 1 to 1, a unit weight at ku balances k — 1 units of weight at 0. So the
weights should be % at 0 and % at ku, which is exactly Markov’s bound.

Now we can prove Chebyshev’s inequality quite easily.

Proof of Theorem 16.2 Define the r.v. ¥ = (X — u)?. Note that E(Y) = E((X — u)?) = Var(X). Also,
notice that the probability we are interested in, Pr[|X — u| > «], is exactly the same as Pr[Y > o?]. (Why?)
Moreover, Y is obviously non-negative, so we can apply Markov’s inequality to it to get

@ _ Var(X)

PrlY > o?] < " o)

This completes the proof. O

Examples

Here are some examples of applications of Chebyshev’s inequality (you should check the algebra in them):

1. Coin tosses. Let X be the number of Heads in n tosses of a fair coin. The probability that X deviates
from p = 5 by more than /n is at most zlt' The probability that it deviates by more than 5./n is at

1
most 100"

2. Fixed points. Let X be the number of fixed points in a random permutation of n items; recall that
E(X) = Var(X) = 1. Thus the probability that more than (say) 10 students get their own homeworks
after shuffling is at most Wlo’ however large n is.
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In some special cases, including the coin tossing example above, it is possible to get much tighter bounds on
the probability of deviations from the mean. However, for general random variables Chebyshev’s inequality
is essentially the only tool. Its power derives from the fact that it can be applied to any random variable.

Estimating the bias of a coin

Question: We want to estimate the proportion p of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
and additive factor of 0.1 of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the
random variable S,,. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the value A, = %Sn.

Now as has often been the case, we will find it helpful to write S, = X; + X, + - - - + X,;, where

1 if person i in sample is a Democrat;
l 0 otherwise.

Note that each X; can be viewed as a coin toss, with Heads probability p (though of course we do not
know the value of p!). And the coin tosses are independent.! We call such a family of random variables
independent, identically distributed, or i.i.d. for short.

What is the expectation of our estimate?

E(A,) =E(S,) =1EX + X+ +X,) = L x (np) = p.

n

So for any value of n, our estimate will always have the correct expectation p. [Such a r.v. is often called an
unbiased estimator of p.] Now presumably, as we increase our sample size n, our estimate should get more
and more accurate. This will show up in the fact that the variance decreases with n: i.e., as n increases, the
probability that we are far from the mean p will get smaller.

To see this, we need to compute Var(A,). ButA, = - Y* | X;, which is just a multiple of a sum of independent
random variables.

2 ZVar

where we have written 62 for the variance of each of the X;. So we see that the variance of A, decreases
linearly with n. This fact ensures that, as we take larger and larger sample sizes n, the probability that we
deviate much from the expectation p gets smaller and smaller.

Var(A,) = Var %zn: (1 2Var(zn:
i=1 i=1

Let’s now use Chebyshev’s inequality to figure out how large n has to be to ensure a specified accuracy
in our estimate of the proportion of Democrats p. A natural way to measure this is for us to specify two
parameters, € and 0, both in the range (0, 1). The parameter € controls the error we are prepared to tolerate

'We are assuming here that the sampling is done “with replacement™; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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in our estimate, and & controls the confidence we want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample size n have to be in order
to ensure that
Pr[|A, —p| > €] <8?

In our original question, we had € = 0.1 and § = 0.05.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(A,),
this will be quite simple. From Chebyshev’s inequality, we have
Var(A,) o2

Pr{|A, —p| > €] < 2 = pysh

To make this less than the desired value 0, we need to set
o2

n>——.
—£25

D

Now recall that 6% = Var(X;) is the variance of a single sample X;. So, since X; is a 0/1-valued r.v., we have
02 = p(1 — p), and inequality (1) becomes

p(1—p)

g6
Since p(1 — p) is takes on its maximum value for p = 1/2, we can conclude that it is sufficient to choose n
such that:

n> ()

Plugging in € = 0.1 and & = 0.05, we see that a sample size of n = 500 is sufficient. Notice that the size
of the sample is independent of the total size of the population! This is how polls can accurately estimate
quantities of interest for a population of several hundred million while sampling only a very small number
of people.

Estimating a general expectation

What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v. X; is the wealth of the ith person in our sample. Clearly E(X;) = u, the
average wealth (which is what we are trying to estimate). And our estimate will again be A, = % 1 X, for
a suitably chosen sample size n. Once again the X; are i.i.d. random variables, so we again have E(4,) = u
and Var(A,) = %2, where 62 = Var(X;) is the variance of the X;. (Recall that the only facts we used about
the X; was that they were independent and had the same distribution — actually the same expectation and
variance would be enough: why?) This time, however, since we do not have any a priori bound on the mean
U, it makes more sense to let € be the relative error. i.e. we wish to find an estimate A, that is within an
additive error of eu:
PrlA, —p| > ] < 8.

Using equation (1), but substituting €1t in place of €, it is enough for the sample size n to satisfy
2
o 1
nz—uz X—SZS. 4)
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Here € and 0 are the desired relative error and confidence respectively. Now of course we don’t know the
other two quantities, i and o2, appearing in equation (4). In practice, we would use a lower bound on u
and an upper bound on ¢? (just as we used a lower bound on p in the Democrats problem). Plugging these
bounds into equation (4) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safely take u to be at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to take a
very high value for the variance 6. Indeed, if there is at least one individual with wealth $50 billion, then

assuming a relatively small value of it means that the variance must be at least about (Zgox X“fzgz =10"3. (Check
this.) There is really no way around this problem with simple uniform sampling: the uneven distribution of
wealth means that the variance is inherently very large, and we will need a huge number of samples before
we are likely to find anybody who is immensely wealthy. But if we don’t include such people in our sample,

then our estimate will be way too low.

The L&W Of Large Num]oers

The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers (LLN). This asserts that, if we observe some random
variable many times, and take the average of the observations, then this average will converge to a single
value, which is of course the expectation of the random variable. In other words, averaging tends to smooth
out any large fluctuations, and the more averaging we do the better the smoothing.

Theorem 14.4: [Law of Large Numbers] Let X;,X5,...,X, be i.i.d. random variables with common ex-
pectation 4 = E(X;). Define A, = % !, X;. Then for any o > 0, we have

Pr[|A,—pu|>a]—0 as n — oo,

Proof: Let Var(X;) = 62 be the common variance of the r.v.’s; we assume that ¢ is finite>. With this
(relatively mild) assumption, the LLN is an immediate consequence of Chebyshev’s Inequality. For, as we
have seen above, E(A,) = 1 and Var(A,) = ‘772, so by Chebyshev we have

Var(A o?
M———)0 as n — oo,

Prijd, —plz o] < — 3= =3

This completes the proof. O

Notice that the LLN says that the probability of any deviation & from the mean, however small, tends to
zero as the number of observations 7 in our average tends to infinity. Thus by taking n large enough, we can
make the probability of any given deviation as small as we like.

2If 62 is not finite, the LLN still holds but the proof is much trickier.
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