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Self-Reference and Computa]oﬂity
The Liar’s Paradox

Propositions are statements that are either true or false. We saw before that some statements are not well
defined or too imprecise to be called propositions. But here is a statement that is problematic for more subtle
reasons: “All Cretans are liars." So said a Cretan in antiquity, thus giving rise to the so-called liar’s paradox
which has amused and confounded people over the centuries. Actually the above statement isn’t really a
paradox; it simply yields a contradiction if we assume it is true, but if it is false then there is no problem. A
true formulation of this paradox is the following statement: “this statement is false." Is the statement true? If
the statement is true, then what it asserts must be true; namely that it is false. But if it is false, then it must be
true. So it really is a paradox. Around a century ago, this paradox found itself at the center of foundational
questions about mathematics and computation.

We will now study how this paradox relates to computation. Before doing so, let us consider another
manifestation of the paradox, created by the great logician Bertrand Russell. In a village with just one
barber, every man keeps himself clean-shaven. Some of the men shave themselves, while others go to the
barber. The barber proclaims: “I shave all and only those men who do not shave themselves." It seems
reasonable then to ask the question: Does the barber shave himself? Thinking more carefully about the
question though, we see that we are presented with a logically impossible scenario. If the barber does not
shave himself, then according to what he announced, he shaves himself. If the barber does shave himself,
then according to his statement he does not shave himself!

The Halting Problem

Are there tasks that a computer cannot perform? For example, we would like to ask the following basic
question when compiling a program: does it go into an infinite loop? In 1936, Alan Turing showed that there
is no program that can perform this test. The proof of this remarkable fact is very elegant and combines two
ingredients: self-reference (as in the liar’s paradox), and the fact that we cannot separate programs from
data. In computers, a program is represented by a string of bits just as integers, characters, and other data
are. The only difference is in how the string of bits is interpreted.

We will now examine the Halting Problem. Given the description of a program and its input, we would like
to know if the program ever halts when it is executed on the given input. In other words, we would like to
write a program TestHalt that behaves as follows:

“yes", if program P halts on input I

"

TestHalt(PI) = { “no", if program P loops on input I

Why can’t such a program exist? First, let us use the fact that a program is just a bit string, so it can be input
as data. This means that it is perfectly valid to consider the behavior of TestHalt(P,P), which will output
“yes" if P halts on P, and “no" if P loops forever on P. We now prove that such a program cannot exist.
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Proof: Define the program
Turing (P)
if TestHalt (P,P) = "yes" then loop forever
else halt

So if the program P when given P as input halts, then Turing loops forever; otherwise, Turing halts. Assum-
ing we have the program TestHalt, we can easily use it as a subroutine in the above program Turing.

Now let us look at the behavior of Turing(Turing). There are two cases: either it halts, or it does not. If
Turing(Turing) halts, then it must be the case that TestHalt(Turing, Turing) returned “no." But that would
mean that Turing(Turing) should not have halted. In the second case, if Turing(Turing) does not halt, then
it must be the case that TestHalt(Turing, Turing) returned "yes," which would mean that Turing(Turing)
should have halted. In both cases, we arrive at a contradiction which must mean that our initial assumption,
namely that the program TestHalt exists, was wrong. Thus, TestHalt cannot exist, so it is impossible for a
program to check if any general program halts.

What proof technique did we use? This was actually a proof by diagonalization. Why? Since the set of all
computer programs is countable (they are, after all, just finite-length strings over some alphabet, and the set
of all finite-length strings is countable), we can enumerate all programs as follows (where P; represents the
i"" program):
hb
P H
BIL
PIL

=
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The (i, j)™ entry is H if program P; halts on input Pj, and L if it does not halt. Now if the program Turing
exists it must occur somewhere on our list of programs, say as P,. But this cannot be, since if the n'" entry in
the diagonal is H, meaning that P, halts on P,, then by its definition Turing loops on P,; and if the entry is L,
then by definition Turing halts on P,. Thus the behavior of Turing is different from that of F,, and hence
Turing does not appear on our list. Since the list contains all possible programs, we must conclude that the
program Turing does not exist. And since Turing is constructed by a simple modification of TestHalt, we
can conclude that TestHalt does not exist either. Hence the Halting Problem cannot be solved.

In fact, there are many more cases of questions we would like to answer about a program, but cannot. For
example, we cannot know if a program ever outputs anything or if it ever executes a specific line. We cannot
even check to see if the program is a virus. These issues are explored in greater detail in the advanced course
CS172.
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