CS 70 Discrete Mathematics and Pro]oalaility Theory
Fall 2013 Vazirani Note 3

Modular Arithmetic

In several settings, such as error-correcting codes and cryptography, we sometimes wish to work over a
smaller range of numbers. Modular arithmetic is useful in these settings, since it limits numbers to a prede-
fined range {0,1,...,N — 1}, and wraps around whenever you try to leave this range — like the hand of a
clock (where N = 12) or the days of the week (where N = 7).

Example: Calculating the time When you calculate the time, you automatically use modular arithmetic.
For example, if you are asked what time it will be 13 hours from 1 pm, you say 2 am rather than 14.
Let’s assume our clock displays 12 as 0. This is limiting numbers to a predefined range, {0,1,2,...,11}.
Whenever you add two numbers in this setting, you divide by 12 and provide the remainder as the answer.

If we wanted to know what the time would be 24 hours from 2 pm, the answer is easy. It would be 2 pm.
This is true not just for 24 hours, but for any multiple of 12 hours. What about 25 hours from 2 pm? Since
the time 24 hours from 2 pm is still 2 pm, 25 hours later it would be 3 pm. Another way to say this is that
we add 1 hour, which is the remainder when we divide 25 by 12.

This example shows that under certain circumstances it makes sense to do arithmetic within the confines
of a particular number (12 in this example). That is, we only keep track of the remainder when we divide
by 12, and when we need to add two numbers, instead we just add the remainders. This method is quite
efficient in the sense of keeping intermediate values as small as possible, and we shall see in later notes how
useful it can be.

More generally we can define x mod m (in words x modulo m) to be the remainder » when we divide x by
m. i.e. if x mod m = r, then x = mq + r where 0 < r <m— 1 and ¢ is an integer. Thus 5 =29 mod 12 and
3 =13 mod 5.

Computation

If we wish to calculate x+y mod m, we would first add x+y and the calculate the remainder when we divide
the result by m. For example, if x = 14 and y = 25 and m = 12, we would compute the remainder when we
divide x+y = 14425 = 39 by 12, to get the answer 3. Notice that we would get the same answer if we first
computed 2 = x mod 12 and 1 =y mod 12 and added the results modulo 12 to get 3. The same holds for
subtraction: x —y mod 12 is —11 mod 12, which is 1. Again, we could have directly obtained this as 2 — 1
by first simplifying x mod 12 and y mod 12.

This is even more convenient if we are trying to multiply: to compute xy mod 12, we could first compute
xy = 14 x 25 = 350 and then compute the remainder when we divide by 12, which is 2. Notice that we get
the same answer if we first compute 2 =x mod 12 and 1 =y mod 12 and simply multiply the results modulo
12.

More generally, while carrying out any sequence of additions, subtractions or multiplications modm, we
get the same answer even if we reduce any intermediate results modm. This can considerably simplify the

CS 70, Fall 2013, Note 3

—_



calculations.

Set Representation

There is an alternate view of modular arithmetic which helps understand all this better. For any integer m
we say that x and y are congruent modulo m if they differ by a multiple of m, or in symbols,

x=ymodm < mdivides (x—y).

Note that you may also see this written as x = y mod m. For example, 29 and 5 are congruent modulo 12
because 12 divides 29 — 5. We can also write 22 = —2 mod 12. Notice that x and y are congruent modulo m
iff they have the same remainder modulo m.

What is the set of numbers that are congruent to 0 mod 12? These are all the multiples of 12:
{...,—36,—24,—-12,0,12,24,36,...}. What about the set of numbers that are congruent to 1 mod 12?
These are all the numbers that give a remainder 1 when divided by 12: {...,—35,—-23,—11,1,13,25,37,...}.
Similarly the set of numbers congruent to 2 mod 12 is {...,—34,—-22,—10,2,14,26,38,...}. Notice in this
way we get 12 such sets of integers, and every integer belongs to one and only one of these sets.

In general if we work modulo m, then we get m such disjoint sets whose union is the set of all integers. We
can think of each set as represented by the unique element it contains in the range (0,...,m —1). The set
represented by element i would be all numbers z such that z = mx + i for some integer x. Observe that all of
these numbers have remainder i when divided by m; they are therefore congruent modulo m.

We can understand the operations of addition, subtraction and multiplication in terms of these sets. When
we add two numbers, say x =2 mod 12 and y =1 mod 12, it does not matter which x and y we pick from the
two sets, since the result is always an element of the set that contains 3. The same is true about subtraction
and multiplication. It should now be clear that the elements of each set are interchangeable when computing
modulo m, and this is why we can reduce any intermediate results modulo m.

Here is a more formal way of stating this observation:
Theorem 3.1: If a = c mod m and b =d mod m, thena+b=c+d mod mand a-b = c-d mod m.

Proof: We know that c=a+k-mandd =b+/{-m,soc+d=a+k-m+b+{-m=a+b+ (k+/{)-m,
which means that a + b = ¢ +d mod m. The proof for multiplication is similar and left as an exercise. O

What this theorem tells us is that we can always reduce any arithmetic expression modulo m into a natural
number smaller than m. As an example, consider the expresion (134 11)-18 mod 7. Using the above
Theorem several times we can write:

(1I3+11)-18=(6+4)-4 mod 7
=10-4 mod 7
=3-4mod 7
=12 mod 7
=5 mod 7.

In summary, we can always do calculations modulo m by reducing intermediate results modulo m.

IIIVGI‘SGS

We have so far discussed addition, multiplication and subtraction. What about division? This is a bit harder.
Over the reals dividing by a number x is the same as multiplying by y = 1/x. Here y is that number such

CS 70, Fall 2013, Note 3 2



that x-y = 1. Of course we have to be careful when x = 0, since such a y does not exist. Similarly, when we
wish to divide by x mod m, we need to find y mod m such that x- y = 1 mod m; then dividing by x modulo
m will be the same as multiplying by y modulo m. Such a y is called the multiplicative inverse of x modulo
m. In our present setting of modular arithmetic, can we be sure that x has an inverse mod m, and if so, is it
unique (modulo m) and can we compute it?

As a first example, take x = 8 and m = 15. Then 2x = 16 = 1 mod 15, so 2 is a multiplicative inverse of 8
mod 15. As a second example, take x = 12 and m = 15. Then the sequence {ax mod m:a =0,1,2,...} is
periodic, and takes on the values {0,12,9,6,3} (check this!). Thus 12 has no multiplicative inverse mod 15.

So when does x have a multiplicative inverse modulo m? The answer is: iff the greatest common divisor
of m and x is 1. Moreover, when the inverse exists it is unique. Recall that the greatest common divisor of
two natural numbers x and y, denoted ged(x,y), is the largest natural number that divides them both. For
example, gcd(30,24) = 6. If ged(x,y) is 1, it means that x and y share no common factors (except 1). This
is often expressed by saying that x and m are relatively prime.

Theorem 3.2: Let m,x be positive integers such that gcd(m,x) = 1. Then x has a multiplicative inverse
modulo m, and it is unique (modulo m).

Proof: Consider the sequence of m numbers 0,x,2x,...(m — 1)x. We claim that these are all distinct mod-
ulo m. Since there are only m distinct values modulo m, it must then be the case that ax = 1 mod m for
exactly one a (modulo m). This a is the unique multiplicative inverse.

To verify the above claim, suppose that ax = bx mod m for two distinct values a,b in the range 0 < b < a <
m— 1. Then we would have (a — b)x = 0 mod m, or equivalently, (a — b)x = km for some integer k (possibly
Zero or negative).

However, x and m are relatively prime, so x cannot share any factors with m. This implies that @ — » must be
an integer multiple of m. This is not possible, since a — b ranges between 1 and m — 1. O

Actually it turns out that gcd(m,x) = 1 is also a necessary condition for the existence of an inverse: i.e., if
gcd(m,x) > 1 then x has no multiplicative inverse modulo m. You might like to try to prove this using a
similar idea to that in the above proof.

Since we know that multiplicative inverses are unique when ged(m,x) = 1, we shall write the inverse of x as
x~! mod m. Being able to compute the multiplicative inverse of a number is crucial to many applications,
so ideally the algorithm used should be efficient. It turns out that we can use an extended version of Euclid’s
algorithm, which computes the gcd of two numbers, to compute the multiplicative inverse.

Computing the Multiplicative Inverse

Let us first discuss how computing the multiplicative inverse of x modulo m is related to finding ged(x,m).
For any pair of numbers x,y, suppose we could not only compute ged(x,y), but also find integers a,b such
that

d = ged(x,y) = ax+ by. (1

(Note that this is not a modular equation; and the integers a, b could be zero or negative.) For example, we
can write 1 = gcd(35,12) = —1-35+3-12, so here a = —1 and b = 3 are possible values for a, b.

If we could do this then we’d be able to compute inverses, as follows. We first find the integers a and b such
that
1 = ged(m,x) = am+ bx.

CS 70, Fall 2013, Note 3 3



But this means that bx = 1 mod m, so b is the multiplicative inverse of x modulo m. Reducing b modulo m
gives us the unique inverse we are looking for. In the above example, we see that 3 is the multiplicative
inverse of 12 mod 35. So, we have reduced the problem of computing inverses to that of finding integers
a, b that satisfy equation (1). Remarkably, Euclid’s algorithm for computing gcd’s also allows us to find the
integers a and b described above. So computing the multiplicative inverse of x modulo m is as simple as
running Euclid’s ged algorithm on input x and m!

Fuclid’s Algorithm

If we wish to compute the gcd of two numbers x and y, how would we proceed? If x or y is 0, then computing
the ged is easy; it is simply the other number, since 0O is divisible by everything (although of course it divides
nothing). The algorithm for computing gcd(x,y) uses the following theorem to eventually reduce to the case
where one of the numbers is O:

Theorem 3.3: Letx >y and let ¢, r be natural numbers such x = yg+r and r < y. Then ged(x,y) = ged(r,y).

Proof: This is because any common divisor of x and y is also a common divisor of y and r and vice versa. To
see this, if d divides divides both x and y, there exist integers z and 7’ such that zd = x and 7'd = y. Therefore
r=x—yq=zd—7dq=(z—7q)d, and so d divides r. The other direction follows in exactly the same way.
O

Given this theorem, let’s see how to compute gcd(16,10):

16=10x1+6
10=6x1+4
6=4x1+2
4=2x%x24+0
2=0x0+2

In each line, we write the larger number x as yg + r, where y is the smaller number. The next line then
replaces the larger number with y, and the smaller number with . This preserves the gcd, as shown in the
theorem above. Therefore, ged(16,10) = ged(2,0) = 2. Or if you wish you can stop a step earlier and say
that the gcd is the last non-zero remainder: i.e. you can stop at the step 6 =4 x 1 + 2, since at the next step
the remainder is O.

This algorithm can be written recursively as follows:
algorithm gcd(x,V)
if y = 0 then return (x)

else return(gcd(y,x mod y))

Note: This algorithm assumes that x >y > 0 and x > 0.

Let’s go through a quick example of this recursive implementation of Euclid’s algorithm. We wish to
compute gcd(32,10):

ged(32,10) = gcd(10,2)
— ged(2,0)
= 2

CS 70, Fall 2013, Note 3 4



Extended Euclid’s A]gorithm

In order to compute the multiplicative inverse, we need an algorithm which also returns integers a and b
such that:

ged(x,y) = ax+ by.

Now since this problem is a generalization of the basic gcd, it is perhaps not too surprising that we can solve
it with a fairly straightforward extension of Euclid’s algorithm.

Examples

Let’s first see how we would compute such numbers for x = 6 and y = 4. We’ll need the equations from our
example above, copied here for reference:

16=10x1+6
10=6x1+4
6=4x1+2
4=2x2+0

From the last two equations it follows that gcd(6,4) = 2. But now the second last equation gives us the
numbers a, b, since we just rearrange that equationtosay2=6x1—-4x1. Soa=1and b = —1.

What if we started with x = 10 and y = 6?7 Now we would write the last three equations to determine that
gcd(10,6) =2. But how do we find a,b? Start as above and write 2 =6 x 1 —4 x 1. But we want 10 and 6 on
the right hand side, not 6 and 4. But notice that the third from the last equation allows us to write 4 as a linear
combination of 6 and 10 and so we can just back substitute: we rewrite that equationas4 =10x1—-6x1
and substitute to get:

2=6x1-4x1=6x1—-(10x1-6x1)=6x2—-10x1.

If we started with x = 16 and y = 10 we would back substitute again using the first equation rewritten as
6 =16—10 to get:
2=6%x2—-10x1=(16—-10)x2—-10=16x2—10x3. Soa=2and b = —3.

Algorithm

The following recursive algorithm extended-gcd implements the idea used in the examples above. It takes as
input a pair of natural numbers x > y as in Euclid’s algorithm, and returns a triple of integers (d,a,b) such
that d = ged(x,y) and d = ax+ by:

algorithm extended-gcd(x,yVy)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := extended-gcd(y, x mod Vy)
return((d, b, a - (x div y) * b))

Note that this algorithm has the same form as the basic gcd algorithm we saw earlier; the only difference is
that we now carry around in addition the required values a,b. You should hand-turn the algorithm on the
input (x,y) = (16,10) from our earlier example, and check that it delivers correct values for a,b.

CS 70, Fall 2013, Note 3 5



You’ll see a full analysis of this algorithm in CS 170, including correctness and efficiency (the running
time is O(n?)) . Let us understand intuitively why the numbers a and b returned by the algorithm should
give us what we are looking for. We just need to generalize the back substitution method we used in the
example above. The algorithm reduces finding gcd(x,y) to finding ged(y,x mod y). Once the algorithm
finds ged(y,x mod y), it returns values a and b such that:

d =ay+b(x mod y). (2)

Now we need to update these values of a and b, say to A and B, such that
d = Ax+ By. (3)
To figure out what A and B should be, we need to rearrange equation (2), as follows:

d = ay+b(x mod y)
=ay+b(x—|x/y]y)
— b+ (a— [x/y|b)y.
(In the second line here, we have used the fact that x mod y = x — |x/y|y — check this!) Comparing this
last equation with equation (3), we see that we need to take A = b and B = a — |x/y|b. This is exactly what

the algorithm does. Of course we have not fully proved correctness, but you should be able to see why the
algorithm works.

CS 70, Fall 2013, Note 3 6



