CS 70 Discrete Mathematics and Pro]oalaility Theory
Fall 2013 Vazirani Note 7

An Introduction to Graphs

A few centuries ago, residents of the city of Konigsberg, Prussia were interested in a certain problem. They
wanted to know whether it was possible to walk through their city, represented in the image below, by
crossing each bridge only once.

This problem is called The Seven Bridges of Kénigsberg, and in 1736 the brilliant mathematician Leonhard
Euler proved that such a task was impossible. Euler did this by modeling the arrangement of bridges as a
graph (or, more accurately, a multigraph since there can be multiple edges between the same pair of vertices).
For this reason, Euler is generally hailed as the inventor of graph theory.

The relevant features of the seven bridge problem are the two islands (B and C), the two banks (A and D),
and the bridges between these areas. All of these features can be represented by a graph, as shown on the
right in the image above. The two islands and each bank are represented by the 4 little circles, which are
called vertices. The bridges are represented by the lines between the vertices, called the edges of the graph.
(Include labels for vertices/edges?) This graph happens to be undirected, since the bridges can be crossed
in either direction. If we instead had one-way bridges, the graph would be directed.

More formally, a directed graph G(V,E) consists of a finite set of vertices V and a set of edges E. E is a
subset of V x V, where V x V is the Cartesian product of V with itself.! An edge (v,w)in a directed graph is
usually indicated by drawing a line between v and w, with an arrow pointing towards w. Undirected graphs
may be regarded as special kinds of directed graphs, in which (u,v) € E if and only if (v,u) € E. Thus in
an undirected graph the directions of the edges are unimportant, so an edge of an undirected graph is an
unordered pair of vertices {u,v} and is indicated by a line between « and v with no arrow.

As we have defined them, graphs are allowed to have self-loops; i.e., edges of the form (u,u) that go from a
vertex u to itself. Usually, however, graphs are assumed to have no self-loops unless otherwise stated, and
we will assume this from now on. We will also be working only with graphs, and not multigraphs such as
the one representing the bridges of Konigsberg.

A path in a directed graph G = (V,E) is a sequence of edges (vi,v2), (v2,v3), ..., (Va—2,Vn—1)s (Va—1,Vs). In
this case we say that there is a path between vy and v,. A path in an undirected graph is defined similarly.
Usually a path is assumed to be simple, meaning vy, ..., v, are distinct. A path with repeated vertices will be
called a walk. A cycle (or circuit) is a sequence of edges (vi,v2), (v2,v3),, (Vi—2,Vu—1)s Vn—1,Vn)s (Vu, V1),
where vy,...,v, are distinct. A four is a walk which starts and ends at the same vertex. A graph is said to be

IRecall that the Cartesian produce of two sets U and V is defined as U x V = {(u,v) :u € U and v € V'}.

CS 70, Fall 2013, Note 7 1

connected if there is a path between any two distinct vertices.

We say that an edge (u,v) is incident to vertices u and v, and vertices u and v are neighbors or adjacent. If
G = (V,E) is an undirected graph then the degree of vertex u € V is the number of edges incident to u, i.e.,
degree(u) = |{v eV :{u,v} € E}|. A vertex u whose degree is 0 is called an isolated vertex, since there
is no edge which connects u to the rest of the graph. In a directed graph, the in-degree of a vertex u is the
number of edges from other vertices to u, and the out-degree of u is the number of edges from u to other
vertices.

Fulerian Walks and Tours

We can now restate the problem above in the language of graphs: is there a walk in the graph that uses each
edge exactly once? This type of walk is called an Eulerian walk. An Eulerian tour is a tour that uses each
edge exactly once.

Let an even degree graph be a graph in which all vertices have even degree. The next theorem gives necessary
and sufficient conditions for a graph to have an Eulerian tour.

Euler’s Theorem: An undirected graph G = (V, E) has an Eulerian tour if and only if the graph is connected
(except possibly for isolated vertices) and even degree.

Proof (=>): Assume that the graph has an Eulerian tour. This means every vertex that has an edge adjacent
to it (i.e., every non-isolated vertex) must lie on the tour, and is therefore connected with all other vertices
on the tour. This proves that the graph is connected (except for isolated vertices).

Next note that, for each vertex in the tour except the first (and last), the tour leaves it in the next step after
entering it. Thus, every time the tour visits a vertex, it traverses exactly two edges incident to it. Since the
Eulerian tour uses each edge exactly once, this implies that every vertex except the first has even degree.
And the same is true of the first vertex v as well because the first edge leaving v can be paired up with the
last edge returning to v. This completes the proof of this direction.

Proof (<=): Assume that G = (V,E) is connected and even degree. We will show how to construct an
Eulerian tour in G. We will begin walking from a vertex u, never repeating edges. Since the graph is even
degree, each time the walk enters a vertex, it must be able to exit as well. Our walk can therefore only end
on u; it will be a tour. The claim below formalizes this intuition:

Claim 1 In an even degree graph, a walk starting from a vertex u can only get stuck at u.
Let’s call the resulting tour A. Is it Eulerian? Not necessarily; our tour may not encounter all edges in the

graph. Consider the image below- our algorithm could have resulted in tour A, which does not traverse edges
along B and is therefore not Eulerian.

To continue, we will remove A from G and create a new tour B on the remaining edges. We can do this
because the remaining graph (consisting of the remaining edges) still has even degree:

CS 70, Fall 2013, Note 7 2

Claim 2 Removing a tour from an even degree graph will result in an even degree graph.

However, since our eventual goal is to create a single Eulerian tour. So we must splice tours A and B together
into a single tour that traverses each of them. We can only do this if they intersect — there must be some
edge of B such that one of its endpoints lies on A. The following claim says there is always an untraversed
edge "hanging" from A (we will use this edge as our starting point to discover tour B):

Claim 3 Let A be a tour in a connected (except for isolated vertices) graph G. If A does not contain
all edges in G, there exists an edge {u,v} such that A passes through u but does not contain {u,v}.

We can now begin walking from u, using only edges that did not occur in A. By Claim 2, the removal of
edges of A results in an even degree graph and therefore by Claim 1, this new walk will get stuck at u,
creating tour B. We can combine A with B by splicing the two together: we start walking along A until we
reach u, and then walk along B until we return to u, and then return to walking along A until we finish. If
this new tour does not include all edges in G, Claim 3 implies that there exists an untraversed edge which is
connected to the tour. We can then repeat the process.

Here is a possible scenario:

If the above image is the graph in question, our first tour could be tour A. Our second tour could be tour B.
We splice the first two tours together by starting at point 1, walking along A until we reach point 2, walking
along B until we return to point 2, and finishing our walk along A, ending back at point 1. Call this tour 7.
We then create another tour C. To splice T and C together, we walk along T until reaching point 3, then walk
along C until returning to point 3, and then finish our walk along 7. The final walk would be an Eulerian
tour.

We can now prove all the claims above.

Proof of Claim 1

First consider a walk from u to v. For a vertex w, let n(w) be the number of edges on the walk incident to
w. Let’s say we get stuck at v. Then n(v) is odd; we have entered v but not exited. However, since v is
even degree, there must be at least one unused edge incident to v, which we can use to exit v. Therefore, we
cannot get stuck at v.

Proof of Claim 2

If we removed the edges traversed by a tour, we are decreasing the degree of each vertex w by n(w). Since a
tour exits each vertex as often as it enters and our tour does not have any repeated edges, n(w) must be even
for all w. Therefore, the degree of each vertex remains even.

CS 70, Fall 2013, Note 7 3

Proof of Claim 3

Suppose A does not contain all edges in the graph G. Let {x,y} be an edge not in the tour. If x is on A then
we are done. Otherwise, since the graph is connected, there is a path from vertex a on tour A to vertex x.
This path starts with a vertex on A and ends with a vertex not on A. As we traverse the path from a to x,
there must be a first time it touches a vertex v not on the tour A (you can formally prove this by induction!).
The previous vertex u must be on the tour, and so {u,v} is the desired edge.

de Bruijn Graphs

A de Bruijn sequence is a 2"-bit circular sequence such that every string of length n occurs as a contiguous
substring of the sequence exactly once. For example, the following is a de Bruijn sequence for the case
n=73:

Notice that there are eight substrings of length three, each of which corresponds to a binary number from
0 to 7. It turns out that such sequences can be generated from a de Bruijn graph G = (V,E), where V
is the set of all n — 1 bit strings (i.e., V = {0, 1}”_1). Each vertex ajas...a,—1 has two outgoing edges:
(a1a3...an—1,a2a3...a,-10) and (ajay...a,—1,aza3...a,—11). Therefore, each vertex also has two incoming
edges: (0ajay...an—2,a1az...a,—1), (layay...an—2,a1a;...a,—1). For example, if we have the vertex 110, then
the two outgoing edges would be directed toward the vertices 100, and 101. Note that these are directed
edges, and self-loops are permitted.

The de Bruijn sequence is generated by an Eulerian tour in this graph. Euler’s theorem above can be
modified to work for directed graphs: all we need to modify is the second condition, which should now say:
“for every vertex v in V, the in-degree of v equals the out-degree of v". Clearly, the de Bruijn graph satisfies
this condition, and therefore it has an Eulerian tour.

To actually generate the sequence, starting from any vertex, we walk along the tour and add the correspond-
ing bit which was shifted in from the right as we traverse each edge. Here is the de Bruijn graph for n = 3.
Exercise: Find the Eulerian tour of this graph that generates the de Bruijn sequence given above.

N,
N @/

CS 70, Fall 2013, Note 7 4

Hypereubes

Imagine there is only one road connecting cities in southern California with cities in northern California.
If that road is blocked, drivers will have no way of traveling through California. Is there a better network
design which would avoid this issue?

We can model this problem using a graph; the vertices will represent destinations and the edges will represent
roads. The property we want is that no two large sets of cities can be disconnected by failure of a few roads.
Of course, you could achieve this by a complete graph, where there is a road between every possible pair
of cities, but this is hardly practical. Can we achieve something similar while bounding the total number of
edges (or equivalently the degree of each vertex)? The hypercube is a canonical example of a low degree,
well connected graph.

Recall that the set of all n-bit strings is denoted by {0, 1}". The vertex set of an n-dimensional hypercube is
{0,1}" (i.e., there are exactly 2" vertices, each labeled with a distinct n-bit string), and with an edge between
vertices x and y iff x and y differ in exactly one bit position. Le., if x =x1x>...x, and y = y(y>...y,, then
there is an edge between x and y iff there is an i such that Vj # i,x; = y; and x; # y;.

There is another equivalent recursive definition of the hypercube:

The n-dimensional hypercube consists of two copies of the n — 1-dimensional hypercube (the 0-subcube and
the 1-subcube), and with edges between corresponding vertices in the two subcubes. i.e., there is an edge
between vertex x in the 0-subcube (also denoted as vertex Ox) and vertex x in the 1-subcube (denoted 1x).

Claim: The total number of edges in an n-dimensional hypercube is 72",

Proof: Each vertex has n edges incident to it, since there are exactly n bit positions that can be toggled to
get an edge. Since each edge is counted twice, once from each endpoint, this yields a grand total of n2" /2.

Alternative Proof: By the second definition, it follows that E(n) =2E(n—1)+2"', and E(1) = 1. A
straightforward induction shows that E(n) = n2"~!.

It is impossible to break the n-dimensional hypercube into two equal parts, each consisting of 2"~ ! vertices,
without cutting at least 2"~ ! edges. We will prove something stronger: consider how many edges must be
cut to separate a subset S of vertices from the remaining vertices V — S. Assume that S is the smaller piece;
ie. |S| < |V —S|. Then |S| <2"!. Let Es denote the set of edges connecting vertices in S to vertices in
V — 8. Note that Eg = Ey_g.

Theorem: |Es| > |S|.

Proof: By induction on n. The base case n = 1 is trivial.

For the induction step, let So be the vertices from the 0-subcube in S, and S| be the vertices in S from the
1-subcube.

Case 1: |So| < 2" !/2 and |S;| < 2" !/2

If |So| <271 /2 and |S;| < 2"~!/2 then applying the induction hypothesis to each of the subcubes shows that
the number of edges between S and V — § even without taking into consideration edges that cross between
the O-subcube and the 1-subcube, already exceeds |So|+ [S1]| = |S].

Case 2: [Sy| >2""1/2
Then |S;| < 2" /2 since |S| <271

By the inductive hypothesis applied to |S;|, there must also be at least |S;| edges in the 1-subcube crossing
between S and V —S. What about the 0-subcube? There we have |So| > 2! /2, so we cannot apply the

CS 70, Fall 2013, Note 7 5

induction hypothesis. Instead, if we let V be all the vertices in the 0-subcube, we can apply the inductive
hypothesis to So = Vo — So, since this set has 2"~! —|Sy| < 2"~ /2 elements. Applying the induction hy-
pothesis, we note that the number of edges between Sy and Vy — Sy is at least 2"~ ! — |So|. So between the
0-subcube and the 1-subcube we have a grand total of 2! —|Sy| + |S| | crossing edges between S and V — S.
We are still short of our goal.

We can add to our total by noting that there must be at least |So| — |S;| edges in Es that cross between the
two subcubes. This is because there is an edge between every vertex of the form Ox and the corresponding
vertex 1x. This gives us a grand total of at least 2"~ —[So| + [S| +|So| — |S1| = 2"~ > |S| So |Es| > |S], as
required. This completes the proof of the inductive step in Case 2.

CS 70, Fall 2013, Note 7 6

