CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Induction Practice

1. Variations

Suppose we were trying to prove P(n) is true for all $n \in N$ by induction on n. Instead we succeeded in proving $\forall k \in N$ if P(k) is true then P(k+2) is true. For each of the following assertions below, state whether (A) it must always hold, or (N) it can never hold, or (C) it can hold but need not always. Give a very brief (one or two sentence) justification for your answers. The domain of all quantifiers is the natural numbers.

- (a) $\forall n > 0 P(n)$.
- (b) If P(0) is true then $\forall n \ P(n+2)$ is true.
- (c) If P(0) is true then $\forall n \ P(2n)$ is true.
- (d) $\forall n \ P(n)$ is false.
- (e) If P(0) and P(1) are true then $\forall n P(n)$ is true.
- (f) We can conclude that $(\forall n \le 10 \ P(n) \text{ is true})$, and $(\forall n > 10 \ P(n) \text{ is false})$.

2. Chocolate!

Chocolate often comes in rectangular bars marked off into smaller squares. It is easy to break a larger rectangle into two smaller rectangles along any of the horizontal or vertical lines between the squares. Suppose I have a bar containing k squares and wish to break it down into its individual squares. Prove that *no matter which way I break it*, it will take exactly k-1 breaks to do this.

3. Recursion

Let the function g be defined recursively on the natural numbers as follows: g(0) = 0, g(1) = 1, and g(n) = 5g(n-1) - 6g(n-2), for all $n \ge 2$. Show that $\forall n \in \mathbb{N}, g(n) = 3^n - 2^n$.

(a) For $n \in N$ with $n \ge 2$, define s_n by

$$s_n = (1 - \frac{1}{2}) \times (1 - \frac{1}{3}) \times \cdots \times (1 - \frac{1}{n}).$$

Prove that $s_n = 1/n$ for every natural number $n \ge 2$.

- (b) Let $a_n = 3^{n+2} + 4^{2n+1}$. Prove that 13 divides a_n for every $n \in N$. (Hint: What can you say about $a_{n+1} 3a_n$?)
- (c) Prove that $2^n < n!$ for all integers n > 4.
- (d) Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ for all integers $n \in \mathbb{N}$.

5. A pizza proof.

Working at the local pizza parlor, I have a stack of unbaked pizza doughs. For a most pleasing presentation, I wish to arrange them in order of size, with the largest pizza on the bottom. I know how to place my spatula under one of the pizzas and flip over the whole stack above the spatula (reversing their order). This is the only move I know that can change the order of the stack; however, I am willing to keep repeating this move until I get the stack in order. Is it always possible to get the pizzas in order? Prove your answer.

6. Grading proofs

Assign a grade of A (correct) or F (failure) to each of the following proofs. If you give a F, please explain exactly everything that is wrong with the structure or the reasoning in the *proof*. You should justify all your answers (remember, saying that the claim is false is *not* a justification).

(a) **Claim**: For every $n \in \mathbb{N}$ with $n \ge 1$, $n^2 + n$ is odd.

Proof:

The proof will be by induction.

Base case: The natural number 1 is odd.

Inductive step: Suppose $k \in \mathbb{N}$ and $k^2 + k$ is odd. Then,

$$(k+1)^2 + (k+1) = k^2 + 2k + 1 + k + 1 = (k^2 + k) + (2k+2)$$

is the sum of an odd and an even integer. Therefore, $(k+1)^2 + (k+1)$ is odd. By the Principle of Mathematical Induction, the property that $n^2 + n$ is odd is true for all natural numbers n.

(b) **Claim**: For all $x, y, n \in \mathbb{N}$, if $\max(x, y) = n$, then x = y.

Proof:

The proof will be by induction.

Base case: Suppose that n = 0. If $\max(x, y) = 0$ and $x, y \in N$, then x = 0 and y = 0, hence x = y. Induction step: Assume that, whenever we have $\max(x, y) = k$, then x = y must follow. Next suppose x, y are such that $\max(x, y) = k + 1$. Then it follows that $\max(x - 1, y - 1) = k$, so by the inductive hypothesis, x - 1 = y - 1. In this case, we have x = y, completing the induction step.

(c) Claim: $\forall n \in \mathbb{N}. \ n^2 \leq n.$

Proof:

The proof will be by induction.

Base case: When n = 0, the statement is $0^2 < 0$ which is true.

Induction step: Now suppose that $k \in \mathbb{N}$, and $k^2 \le k$. We need to show that

$$(k+1)^2 \le k+1$$

Working backwards we see that:

$$(k+1)^{2} \leq k+1$$

$$k^{2}+2k+1 \leq k+1$$

$$k^{2}+2k \leq k$$

$$k^{2} \leq k$$

So we get back to our original hypothesis which is assumed to be true. Hence, for every $n \in N$ we know that $n^2 \le n$.

2