
CS 70 Discrete Mathematics and Probability Theory
Fall 2013 Vazirani Error-correction Practice

1. Error-correcting codes

In this question we will go through an example of error-correcting codes. Since we will do this by
hand, the message we will send is going to be short, consisting of n = 3 numbers, each modulo 5, and
the number of errors will be k = 1.

(a) First, construct the message. Let a0 = 3, a1 = 4, and a2 = 2; use the polynomial interpolation
formula to construct a polynomial P(x) of degree 2 (remember that all arithmetic is mod 5) so
that P(0) = a0, P(1) = a1, and P(2) = a2; then extend the message to length n+ 2k by adding
P(3) and P(4). What is the polynomial P(x) and what is the message that is sent?

(b) Suppose the message is corrupted by changing a0 to 0. Use the Berlekamp-Welsh method to
detect the location of the error and to reconstruct the original message a0a1a2. Show clearly all
your work.

2. Error-Detecting Codes

In the realm of error-correcting codes, we usually want to recover the original message if we detect
any errors, and we want to provide a guarantee of being able to do this even if there are k malicious
errors. Suppose that instead we are satisfied with detecting whether there is any error at all and do not
care about the original message if we detect any errors. In class you saw that for recovering from at
most k malicious errors when transmitting a message of length n you need to extend your message by
2k symbols and send a message of length n+ 2k. But since we don’t require recovering the original
message, it is conceivable that we might need less symbols.

(a) Formally suppose that we have a message consisting of n symbols that we want to transmit. We
want to be able to detect whether there is any error if we are guaranteed that there can be at most
k malicious errors. How should we extend our message (i.e. by how many symbols should we
extend, and how should we get those symbols) in order to be able to detect whether our message
has been corrupted on its way? You may assume that we work in GF(p) for a very large prime
number p.

(b) If you were to detect non-malicious errors (i.e. random perturbations of some symbols), how
would you do this using just one additional symbol? Obviously you won’t be able to guarantee
detection, but provide a reason why you think most cases of non-malicious errors will be detected
by your algorithm.

3. Possible Messages

Suppose Alice wants to transmit to Bob a polynomial P of degree ≤ 1 over GF(5). She sends packets
indicating the values of P(0),P(1),P(2), and P(3) so that Bob will be able to recover P even if two
packets are dropped. However, a disaster happens and three packets are dropped: Bob only receives
a packet indicating that P(2) = 3. Help Bob find a list of all the polynomials that P could have been
given this information. (Note that Bob already knowns that the polynomial has degree ≤ 1 and is over
GF(5).)

CS 70, Fall 2013, Error-correction Practice 1



4. Magic!

In this problem we will investigate what happens when in error-correcting codes there are fewer errors
than the decoding algorithm is able to handle. For the entire problem we are working in GF(7).

Assume that we wish to transfer a message of length 2 which we denote by (m1,m2). Each mi is a
member of GF(7). We also wish to be able to correct up to k = 2 errors. Using the error-correcting
codes we learned in class, we have to first find a polynomial P(x) of degree at most 1 such that
P(1) = m1 and P(2) = m2. Then we have to extend the message we send by 2k symbols. i.e. we will
send P(1),P(2),P(3),P(4),P(5),P(6) to the recipient.

(a) Consider an example where (m1,m2) = (4,2). What are the six symbols that are transmitted?

(b) Now assume that you have received these numbers: 5,3,4,0,3,6. i.e. if there were no errors
then we would have P(1) = 5,P(2) = 3,P(3) = 4,P(4) = 0,P(5) = 3,P(6) = 6. Now, write
down the linear equations that help decode error-correcting codes.

(c) In this part try to solve the linear equations you got in the previous section. You should observe
that there are multiple solutions to these equations. Pick two different solutions and for each
one write down the error-locating polynomial E(x) and the polynomial Q(x). In each of the two
solutions divide Q(x) by E(x) to get the original polynomial. Do you get the same polynomial
in both cases?

(d) Factorize E(x) in each one of the two solutions you got to get its roots. Do they have a common
root? What does that tell you about the position of errors in the transmitted message?

5. Check Digits

In this problem, we’ll look at two real-world applications of check-digits.

In the first part, we’ll look at International Standard Book Numbers (ISBNs). These are 10-digit
codes (d1d2 . . .d10) which are assigned by the publisher. These 10 digits contain information about
the language, the publisher, and the number assigned to the book by the publisher. Additionally, the
last digit d10 is a "check digit" selected so that ∑

10
i=1 i ·di ≡ 0 mod 11. (Note that the letter X is used

to represent the number 10 in the check digit.)

(a) Suppose you have very worn copy of the (recommended) textbook for this class. You want to
list it for sale online but you can only read the first nine digits: 0-07-288008-? (the dashes are
only there for readability). What is the last digit? Please show your work, even if you actually
have a copy of the textbook.

(b) Wikipedia says that you can determine the check digit by computing ∑
9
i=1 i · di mod 11. Show

that Wikipedia’s description is equivalent to the above description.

(c) Prove that changing any single digit of the ISBN will render the ISBN invalid. That is, the check
digit allows you to detect a single-digit substitution error.

(d) Does the check digit allow you to detect all two-digit errors (i.e., all errors where a pair of digits,
not necessarily adjacent, are entered incorrectly)?

(e) Can you switch any two digits in an ISBN and still have it be a valid ISBN? For example, could
012345678X and 015342678X both be valid ISBNs?

(f) Now we’ll look at another checksum formula: the Luhn formula (also known as the Luhn algo-
rithm). This formula is used to verify the validity of credit card numbers. You can read more
about it and see an example at http://en.wikipedia.org/wiki/Luhn_algorithm
The algorithm is as follows:

CS 70, Fall 2013, Error-correction Practice 2



i. Double each even-positioned digit, when counting from right to left.
ii. Determine the sum of the digits from each of the products in step (a).

iii. Sum the numbers from step (b). Find the sum of the unaffected digits (odd-positioned
digits) in the original number. Combine these sums.

iv. Verify the account number by determining if the sum from step (c) is equivalent to 0 mod
10.

For clarification, an example from Wikipedia is shown below. In this example, x = 3 is the check
digit.
Using the Luhn algorithm, determine the check digit x for the following number: 601143871005123x.

(g) Can this algorithm detect if any two digits are switched? If not, which will it miss and why?
(Hint: you may look on Wikipedia to get started but explain the answer in your own words.)

CS 70, Fall 2013, Error-correction Practice 3


