CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Modular Arithmetic Practice

1. Modular arithmetic

Solve the following equations for x and y modulo the indicated modulus, or show that no solution exists. Show your work.

- (a) $7x \equiv 1 \pmod{15}$.
- (b) $10x + 20 \equiv 11 \pmod{23}$.
- (c) $5x + 15 \equiv 4 \pmod{20}$.
- (d) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

2. Modular inverse

Prove that the equation $ax \equiv ay \mod n$ implies $x \equiv y \mod n$ whenever gcd(a,n) = 1. Show that the condition gcd(a,n) = 1 is necessary by supplying a counterexample with gcd(a,n) > 1.

3. Fibonacci numbers and Euclid

Recall that the Fibonacci numbers F(0), F(1)... are given by F(0) = F(1) = 1 and the recurrence

$$F(n+1) = F(n) + F(n-1), \qquad n \ge 2.$$

- (a) Show that for any $n \ge 0$, gcd(F(n+1), F(n)) = 1.
- (b) Show that aF(n+1) + bF(n) = 1, where a = F(n-1) and b = -F(n) if n is odd, and a = -F(n-1) and b = F(n) if n is even.

4. Modular counting

What is the size of the set $\{0a, 1a, 2a, 3a, \dots, (x-1)a\}$ modulo x, if gcd(x, a) = 4 and $a \neq 0$? (Consider ia and ja to be the same if $ia = ja \pmod{x}$.)

5. Modular arithmetic proof

Give a proof to the following theorem. You will likely find the use of modular arithmetic useful.

Theorem. If a_1, \ldots, a_n is a sequence of n integers (not necessarily distinct), prove that there is some nonempty subsequence whose sum is a multiple of n.

6. Euclid

Let p,q, and r be distinct primes. Prove that there exist integers a,b, and c such that: $a \cdot (pq) + b \cdot (qr) + c \cdot (rp) = 1$.

7. Modular inverse

Prove that the equation $ax \equiv ay \mod n$ implies $x \equiv y \mod n$ whenever $\gcd(a,n) = 1$. Show that the condition $\gcd(a,n) = 1$ is necessary by supplying a counterexample with $\gcd(a,n) > 1$.

8. Binary gcd

(a) Prove that the following statements are true for all $m, n \in \mathbb{N}$.

```
If m is even and n is even, gcd(m,n) = 2 gcd(m/2, n/2).

If m is even and n is odd, gcd(m,n) = gcd(m/2,n).

If m,n are both odd and m \ge n, gcd(m,n) = gcd((m-n)/2,n).
```

(b) Fill in the missing part of the following template to get an alternative algorithm for computing the gcd.

gcd(m,n):

- 1. If m = 0, return n. If n = 0, return m.
- 2. If *m* is even and *n* is even, return $2 \cdot \gcd(m/2, n/2)$.
- 3. If *m* is even and *n* is odd, return gcd(m/2, n).
- 4. If m is odd and n is even, return gcd(m, n/2).
- 5. ?????????.

Prove that the resulting algorithm correctly computes the gcd.