CS $70 \quad$ Discrete Mathematics and Probability Theory
 Summer 2014 James Cook

Thursday July 17, 2014, 12:40pm-2:00pm.
Instructions:

- Do not turn over this page until the proctor tells you to.
- Don't write any answers on the backs of pages (we won't be scanning those). There is an extra page at the end in case you run out of space.
- The exam has 9 pages (the last two are mostly blank).

PRINT your student ID: \qquad

PRINT AND SIGN your name: \qquad ,
(last)
(first)
(signature)
PRINT your discussion section and GSI (the one you attend): \qquad
Name of the person to your left: \qquad

Name of the person to your right: \qquad

Name of someone in front of you: \qquad

Name of someone behind you: \qquad

PRINT your name and student ID: \qquad
True/False

1. (16 pts.) For each of the following statements, circle T if it is true and F otherwise. You do not need to justify or explain your answers.

T F For all positive integers x and p, if $\operatorname{gcd}(x, p)=1$, then $x^{p-1} \equiv 1(\bmod p)$.
T F One way to prove a statement of the form $P \Longrightarrow Q$ is to assume $\neg Q$ and prove $\neg P$.
T F $\forall x \exists y P(x, y) \equiv \exists x \forall y P(y, x)$.
T \quad F $\quad P \Rightarrow(Q \Rightarrow R) \equiv(P \wedge Q) \Rightarrow R$
T $\quad \mathrm{F} \quad P \Rightarrow(Q \wedge R) \equiv(P \Rightarrow Q) \vee R$
T F
To prove $(\forall n \in \mathbf{N}) P(n)$, it is enough to prove $P(0), P(2)$ and $(\forall n \geq 2)(P(n) \Rightarrow$ $P(n+2))$.
T F In a stable marriage instance, there can be two women with the same optimal man.
T F In stable marriage, if Man 1 is at the top of Woman A's ranking but the bottom of every other woman's ranking, then every stable matching must pair 1 with A.

PRINT your name and student ID:

Short Answer

2. $(4$ pts. $)$ Compute $\left(2^{3} \cdot 5^{71}\right)+\left(3^{3}+4^{2}\right) \bmod 8$.
3. $(4$ pts. $)$ Compute $\frac{200+14 \cdot 102}{99} \bmod 10$.
4. (4 pts.) Prove that $(\exists x \in \mathbf{R})(\forall y \in \mathbf{R}) x \cdot y<2$.

PRINT your name and student ID:
RSA
5. (12 pts.) Someone sends Pandu an RSA-encrypted message x. The encrypted value is $E(x)=2$. However, Pandu was silly and picked numbers far too small to make RSA secure. Given his public key ($N=77, e=$ $43)$, find x.

PRINT your name and student ID:

Induction

6. (12 pts.) Prove that every two consecutive numbers in the Fibonacci sequence are coprime. (In other words, for all $n \geq 1, \operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$. Recall that the Fibonacci sequence is defined by $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-2}+F_{n-1}$ for $n>2$.)

PRINT your name and student ID: \qquad

Error-Correcting Codes

7. (15 pts.) Alice wants to send to Bob a message of length 3, and protect against up to 2 erasure errors. Using the error-correcting code we learned in class, she obtains a polynomial $P(x)$ modulo 11 and sends 5 points to Bob. Bob only receives 3 of the points: $P(1)=4, P(3)=1, P(4)=5$.
(a) (12 pts.) Decode Alice's original message $P(1), P(2), P(3)$.
(b) (3 pts.) If Alice tried to send a message with a modulus of 10 instead of 11 , what exactly could go wrong? (You don't need to do any computations in your answer.)

PRINT your name and student ID:

Polynomials

8. (16 pts.) Suppose P is a polynomial over \mathbf{R}, and for every $x, y \in \mathbf{R}, P(x+y)=P(x)+P(y)$.
(a) Prove that for every positive integer $n, P(n)=n \cdot P(1)$.
(b) Prove that P has degree at most 1 .

PRINT your name and student ID:
[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem's main page.]

PRINT your name and student ID:
[Doodle page! Draw us something if you want or give us suggestions or complaints.]

