
CS 70 Discrete Mathematics and Probability Theory
Summer 2014 James Cook Note 10

Counting
In the next major topic of the course, we will be looking at probability. Suppose you toss a fair coin a
thousand times. How likely is it that you get exactly 500 heads? And what about 1000 heads? It turns out
that the chances of 500 heads are roughly 2.5%, whereas the chances of 1000 heads are so infinitesimally
small that we may as well say that it is impossible. But before you can learn to compute or estimate odds or
probabilities you must learn to count! That is the subject of this note.

We will learn how to count the number of outcomes while tossing coins, rolling dice and dealing cards.
Many of the questions we will be interested in can be cast in the following simple framework, called the
occupancy model:

Balls & Bins: We have a set of k balls. We wish to place them into n bins. How many different possible
outcomes are there?

How do we represent coin tossing and card dealing in this framework? Consider the case of n = 2 bins
labelled H and T , corresponding to the two possible outcomes of a coin toss. The placement of the k balls
correspond to the outcomes of k successive coin tosses. To model card dealing, consider the situation with
52 bins corresponding to a deck of cards. Here the balls correspond to successive cards in a deal.

The two examples illustrate two different constraints on ball placements. In the coin tossing case, different
balls can be placed in the same bin. This is called sampling with replacement. In the cards case, no bin
can contain more than one ball (i.e, the same card cannot be dealt twice). This is called sampling without
replacement. As an exercise, what are n and k for rolling dice? Is it sampling with or without replacement?

We are interested in counting the number of ways of placing k balls in n bins in each of these scenarios. This
is easy to do by applying the first rule of counting:

First Rule of Counting: If an object can be made by a succession of k choices, where there are n1 ways
of making the first choice, and for every way of making the first choice there are n2 ways of making the
second choice, and for every way of making the first and second choice there are n3 ways of making the
third choice, and so on up to the nk-th choice, then the total number of distinct objects that can be made in
this way is the product n1 ·n2 ·n3 · · ·nk.

Here is another way of picturing this rule: consider a tree with branching factor n1 at the root, n2 at every
node at the second level, ..., nk at every node at the k-th level. Then the number of leaves in the tree is the
product n1 ·n2 ·n3 · · ·nk. For example, if n1 = 2, n2 = 2, and n3 = 3, then there are 12 leaves (i.e. outcomes):

CS 70, Summer 2014, Note 10 1

Let us apply this counting rule to figuring out the number of ways of placing k balls in n bins with replace-
ment. This is easy; it is just nk: n choices for the first ball, n for the second, and so on.

The rule is more interesting in the case of sampling without replacement. Now there are n ways of placing
the first ball, and no matter where it is placed there are exactly n−1 bins in which the second ball may be
placed (exactly which n−1 depends upon which bin the first ball was placed in, but the number of choices
is always n−1), and so on. So as long as k≤ n, the number of placements is n(n−1) · · ·(n−k+1) = n!

(n−k)! .
(By convention we define 0! = 1.) Applying this to Poker hands, we can count the number of 5-card
sequences by the formula 52!

(52−5)! =
52!
(47)! = 52 ·51 ·50 ·49 ·48, which is a very large number indeed!

Counting Unordered Sets
When dealing a hand of cards, say a poker hand, it is often more natural to count the number of distinct
hands (i.e. the set of 5 cards dealt in the hand), rather than the order in which they were dealt. As we’ve
seen in the section above, if we are considering order, there are 52 ·51 ·50 ·49 ·48 = 52!

47! outcomes. But how
many distinct hands of 5 cards are there? Here is another way of asking the question: each such 5 card hand
is just a subset of S of cardinality 5. So we are asking how many 5 element subsets of S are there?

Here is a clever trick for counting the number of distinct subsets of S with exactly 5 elements. Create a bin
corresponding to each such 5 element subset. Now take all the sequences of 5 cards and distribute them into
these bins in the natural way. Each sequence gets placed in the bin corresponding to the set of 5 elements in
the sequence. Thus if the sequence is (2,7,8,11,4), then it is placed in the bin labeled {2,4,7,8,11}. How
many sequences are placed in each bin? The answer is exactly 5!, since there are exactly 5! different ways
to order 5 cards.

Recall that our goal was to compute the number of 5 element subsets, which now corresponds to the number
of bins. We know that there are 52!

47! 5-card sequences, and there are 5! sequences placed in each bin. The
total number of bins is therefore 52!

47!5! .

This quantity n!
(n−k)!k! is used so often that there is special notation for it:

(n
k

)
, pronounced n choose k. This

is the number of ways of picking k distinct elements from S, where the order of placement does not matter.
Equivalently, it’s the number of ways of choosing k objects out of a total of n objects, where the order of the
choices does not matter.

The trick we used above is actually our second rule of counting:

Second Rule of Counting: If an object is made by a succession of choices, and the order in which the
choices is made does not matter, count the number of ordered objects, and divide by the number of ordered
objects per unordered object. Note that this rule can only be applied if the number of ordered objects is the
same for every unordered object.

CS 70, Summer 2014, Note 10 2

Let us continue with our example of a poker hand. We wish to calculate the number of ways of choosing 5
cards out of a deck of 52 cards. So we first count the number of ways of dealing a 5-card hand pretending
that we care which order the cards are dealt in. This is exactly 52!

47! as we computed above. Now we ask, for
a given poker hand, in how many ways could it have been dealt? The 5 cards in the given hand could have
been dealt in any one of 5! ways. Therefore, by the second rule of counting, the number of poker hands is

52!
47!5! .

This quantity n!
(n−k)!k! is used so often that there is special notation for it:

(n
k

)
, pronounced n choose k. This

is the number of ways of placing k balls in n bins (without replacement), where the order of placement does
not matter. Equivalently, it’s the number of ways of choosing k objects out of a total of n objects, where the
order of the choices does not matter.

What about the case of sampling with replacement? How many ways are there of placing k balls in n
bins with replacement when the order does not matter? A little bit of thought shows that directly applying
the second rule of counting leads to a hopelessly complicated calculation. To see this more clearly, let us
consider the case k = 2, and try to apply the second rule of counting. There are nk ordered placements.
How many ordered placements are there per unordered placement? Unfortunately this depends on which
unordered placement we are considering. In the case we are considering, k = 2 (two balls), if the two balls
are in distinct bins then there are two corresponding ordered placements, while if they are in the same bin
then there is just one corresponding ordered placement. Thus we have to consider these two cases separately.
In the first case, there are n ways to place the first ball, and n− 1 ways to place the second ball, giving us
n(n− 1) corresponding ordered placements; by the second rule of counting, we divide by 2 and get n(n−1)

2
unordered placements of the balls in distinct bins. In the second case, there are n ways to place both balls in
the same bin; by the second rule of counting, we divide by 1 and get n unordered placements for the balls in
the same bin. Putting both cases together, there are n(n−1)

2 +n = n(n+1)
2 ways to place two balls into n bins

where order does not matter. For larger values of k, this kind of case analysis gets hopelessly complicated.

Yet there is a remarkably elegant way of calculating this number. Represent each of the balls by a 0 and the
separations between boxes by 1’s. So we have k 0’s and (n− 1) 1’s. Each placement of the k balls in the
n boxes corresponds uniquely to a binary string with k 0’s and (n− 1) 1’s. Here is a sample placement of
k = 4 balls into n = 5 bins and how it can be represented as a binary string:

But the number of such binary strings is easy to count: we have n+ k− 1 positions, and we must choose
which k of them contain 0’s. So the answer is

(n+k−1
k

)
.

CS 70, Summer 2014, Note 10 3

Combinatorial Proofs
Combinatorial arguments are interesting because they rely on intuitive counting arguments rather than al-
gebraic manipulation. For example, it is true that

(n
k

)
=
(n

n−k

)
. Though you may be able to prove this fact

rigorously by definition of
(n

k

)
and algebraic manipulation, some proofs are actually much more tedious

and difficult. Instead, we will try to discuss what each term means, and then see why the two sides are
equal. When we write

(n
k

)
, we are really counting how many ways we can choose k objects from n objects.

But each time we choose any k objects , we must also leave behind n− k objects, which is the same as
choosing n− k (to leave behind). Thus,

(n
k

)
=
(n

n−k

)
. Some facts are less trivial. For example, it is true that(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
. The two terms on the right hand side are splitting up choosing k from n objects into two

cases: we either choose the first element, or we do not. To count the number of ways where we choose the
first element, we have k−1 objects left to choose, and only n−1 objects to choose from, and hence

(n−1
k−1

)
ways. For the number of ways where we don’t choose the first element, we have to pick k objects from n−1
this time, giving

(n−1
k

)
ways. [Exercise: Check algebraically that the above formula holds.]

We can also prove even more complex facts, such as
(n

k+1

)
=
(n−1

k

)
+
(n−2

k

)
+ · · ·+

(k
k

)
. What does the right

hand side really say? It is splitting up the process into cases according to the first (i.e. lowest-numbered)
object we select. In other words:

First element selected is either



element 1,
(n−1

k

)
element 2,

(n−2
k

)
element 3,

(n−3
k

)
...

element(n− k),
(k

k

)
(Note that the lowest-numbered object we select cannot be higher than n− k as we have to select k distinct
objects.)

The last combinatorial proof we will do is the following:
(n

0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n. To see this, imagine that

we have a set S with n elements. On the left hand side, the ith term counts the number of ways of choosing a
subset of S of size exactly i; so the sum on the left hand side counts the total number of subsets (of any size)
of S.

We claim that the right hand side (2n) does indeed also count the total number of subsets. To see this, just
identify a subset with an n-bit vector, where in each position j we put a 1 if the jth element is in the subset,
and a 0 otherwise. So the number of subsets is equal to the number of n-bit vectors, which is 2n (there are
2 options for each bit). Let us look at an example, where S = {1,2,3} (so n = 3). Enumerate all 23 = 8
possible subsets of S: {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. The term

(3
0

)
counts the number of

ways to choose a subset of S with 0 elements; there is only one such subset, namely the empty set. There
are
(3

1

)
= 3 ways of choosing a subset with 1 element,

(3
2

)
= 3 ways of choosing a subset with 2 elements,

and
(3

3

)
= 1 way of choosing a subset with 3 elements (namely, the subset consisting of the whole of S).

Summing, we get 1+3+3+1 = 8, as expected.

CS 70, Summer 2014, Note 10 4

