
CS 70 Discrete Mathematics and Probability Theory
Summer 2014 James Cook Note 19

To Infinity And Beyond: Countability and Computability
This note ties together two topics that might seem like they have nothing to do with each other. The nature
of infinity (and more particularly, the distinction between different levels of infinity) and the fundamental
nature of computation and proof. This note can only scratch the surface — if you want to understand this
material more deeply, there are wonderful courses in the Math department as well as EECS172 and graduate
courses like EECS229A that will connect this material to the nature of information and compression as well.

Cardinality
How can we determine whether two sets have the same cardinality (or “size”)? The answer to this question,
reassuringly, lies in early grade school memories: by demonstrating a pairing between elements of the two
sets. More formally, we need to demonstrate a bijection f between the two sets. The bijection sets up a
one-to-one correspondence, or pairing, between elements of the two sets. We know how this works for finite
sets. In this lecture, we will see what it tells us about infinite sets.

Are there more natural numbers N than there are positive integers Z+? It is tempting to answer yes, since
every positive integer is also a natural number, but the natural numbers have one extra element 0 /∈Z+. Upon
more careful observation, though, we see that we can generate a mapping between the natural numbers and
the positive integers as follows:

N 0 1 2 3 4 5 . . .

↓ ↘ ↘ ↘ ↘ ↘ ↘
Z+ 1 2 3 4 5 6 . . .

Why is this mapping a bijection? Clearly, the function f : N→ Z+ is onto because every positive integer
is hit. And it is also one-to-one because no two natural numbers have the same image. (The image of n is
f (n) = n+1, so if f (n) = f (m) then we must have n = m.) Since we have shown a bijection between N and
Z+, this tells us that there are as many natural numbers as there are positive integers! Informally, we have
proved that “∞+1 = ∞.”

What about the set of even natural numbers 2N = {0,2,4,6, ...}? In the previous example the difference was
just one element. But in this example, there seem to be twice as many natural numbers as there are even
natural numbers. Surely, the cardinality of N must be larger than that of 2N since N contains all of the odd
natural numbers as well. Though it might seem to be a more difficult task, let us attempt to find a bijection
between the two sets using the following mapping:

N 0 1 2 3 4 5 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓
2N 0 2 4 6 8 10 . . .

The mapping in this example is also a bijection. f is clearly one-to-one, since distinct natural numbers get
mapped to distinct even natural numbers (because f (n) = 2n). f is also onto, since every n in the range is

CS 70, Summer 2014, Note 19 1

hit: its pre-image is n
2 . Since we have found a bijection between these two sets, this tells us that in fact N

and 2N have the same cardinality!

What about the set of all integers, Z? At first glance, it may seem obvious that the set of integers is larger
than the set of natural numbers, since it includes negative numbers. However, as it turns out, it is possible to
find a bijection between the two sets, meaning that the two sets have the same size! Consider the following
mapping:

0→ 0, 1→−1, 2→ 1, 3→−2, 4→ 2, . . . , 124→ 62, . . .

In other words, our function is defined as follows:

f (x) =
{ x

2 , if x is even
−(x+1)

2 , if x is odd

We will prove that this function f : N→ Z is a bijection, by first showing that it is one-to-one and then
showing that it is onto.

Proof (one-to-one): Suppose f (x) = f (y). Then they both must have the same sign. Therefore either f (x) =
x
2 and f (y) = y

2 , or f (x) = −(x+1)
2 and f (y) = −(y+1)

2 . In the first case, f (x) = f (y)⇒ x
2 = y

2 ⇒ x = y. Hence
x = y. In the second case, f (x) = f (y)⇒ −(x+1)

2 = −(y+1)
2 ⇒ x = y. So in both cases f (x) = f (y)⇒ x = y,

so f is injective.

Proof (onto): If y ∈ Z is non-negative, then f (2y) = y. Therefore, y has a pre-image. If y is negative, then
f (−(2y+1)) = y. Therefore, y has a pre-image. Thus every y ∈ Z has a preimage, so f is onto.

Since f is a bijection, this tells us that N and Z have the same size.

Now for an important definition. We say that a set S is countably infinite if there is a bijection between S
and N. We say a set is countable if it is finite or countably infinite. Thus any finite set S is countable (since
finiteness means by definition that there is a bijection between S and the set {0,1,2, . . . ,m− 1}, where
m = |S| is the size of S). And we have already seen three examples of countably infinite sets: Z+ and 2N are
obviously countable since they are themselves subsets of N; and Z is countable because we have just seen a
bijection between it and N.

What about the set of all rational numbers? Recall that Q = { x
y | x,y ∈ Z, y 6= 0}. Surely there are more

rational numbers than natural numbers? After all, there are infinitely many rational numbers between any
two natural numbers. Surprisingly, the two sets have the same cardinality! To see this, let us introduce a
slightly different way of comparing the cardinality of two sets.

If there is a one-to-one function f : A→ B, then the cardinality of A is less than or equal to that of B. Now to
show that the cardinality of A and B are the same we can show that |A| ≤ |B| and |B| ≤ |A|. This corresponds
to showing that there is a one-to-one function f : A→ B and a one-to-one function g : B→ A. The existence
of these two one-to-one functions implies that there is a bijection h : A→ B, thus showing that A and B have
the same cardinality. The proof of this fact, which is called the Cantor-Bernstein theorem, is actually quite
hard, and we will skip it here.

Back to comparing the natural numbers and the integers. First it is obvious that |N| ≤ |Q| because N ⊆ Q.
So our goal now is to prove that also |Q| ≤ |N|. To do this, we must exhibit an injection f : Q→ N. The
following picture of a spiral conveys the idea of this injection:

CS 70, Summer 2014, Note 19 2

Each rational number a
b (written in its lowest terms, so that gcd(a,b) = 1) is represented by the point (a,b)

in the infinite two-dimensional grid shown (which corresponds to Z×Z, the set of all pairs of integers).
Note that not all points on the grid are valid representations of rationals: e.g, all points on the x-axis have
b = 0 so none are valid (except for (0,0), which we take to represent the rational number 0); and points
such as (2,8) and (−1,−4) are not valid either as the rational number 1

4 is represented by (1,4). But Z×Z
certainly contains all rationals under this representation, so if we come up with an injection from Z×Z to N
then this will also be an injection from Q to N (why?).

The idea is to map each pair (a,b) to its position along the spiral, starting at the origin. (Thus, e.g, (0,0)→ 0,
(1,0)→ 1, (1,1)→ 2, (0,1)→ 3, and so on.) This mapping certainly maps every rational number to a
natural number, because every rational appears somewhere (exactly once) in the grid, and the spiral hits
every point in the grid. Why is this mapping an injection? Well, we just have to check that no two rational
numbers map to the same natural number. But that is true because no two pairs lie at the same position on
the spiral. (Note that the mapping is not onto because some positions along the spiral do not correspond to
valid representations of rationals; but that is fine.)

This tells us that |Q| ≤ |N|. Since also |N| ≤ |Q|, as we observed earlier, by the Cantor-Bernstein Theorem
N and Q have the same cardinality.

Our next example concerns the set of all binary strings (of any finite length), denoted {0,1}∗. Despite the
fact that this set contains strings of unbounded length, it turns out to have the same cardinality as N. To see
this, we set up a direct bijection f : {0,1}∗→ N as follows. Note that it suffices to enumerate the elements
of {0,1}∗ in such a way that each string appears exactly once in the list. We then get our bijection by setting
f (n) to be the nth string in the list. How do we enumerate the strings in {0,1}∗? Well, it’s natural to list them
in increasing order of length, and then (say) in lexicographic order (or, equivalently, numerically increasing
order when viewed as binary numbers) within the strings of each length. This means that the list would look
like

ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,1000, . . . ,

where ε denotes the empty string (the only string of length 0). It should be clear that this list contains each
binary string once and only once, so we get a bijection with N as desired.

Our final countable example is the set of all polynomials with natural number coefficients, which we denote
N(x). To see that this set is countable, we will make use of (a variant of) the previous example. Note first
that, by essentially the same argument as for {0,1}∗, we can see that the set of all ternary strings {0,1,2}∗
(that is, strings over the alphabet {0,1,2}) is countable. To see that N(x) is countable, it therefore suffices to
exhibit an injection f : N(x)→{0,1,2}∗, which in turn will give an injection from N(x) to N. (It is obvious
that there exists an injection from N to N(x), since each natural number n is itself trivially a polynomial,

CS 70, Summer 2014, Note 19 3

namely the constant polynomial n itself.)

How do we define f ? Let’s first consider an example, namely the polynomial p(x)= 5x5+2x4+7x3+4x+6.
We can list the coefficients of p(x) as follows: (5,2,7,0,4,6). We can then write these coefficients as binary
strings: (1012,102,1112,02,1002,1102). Now, we can construct a ternary string where a “2” is inserted as a
separator between each binary coefficient (ignoring coefficients that are 0). Thus we map p(x) to a ternary
string as illustrated below:

It is easy to check that this is an injection, since the original polynomial can be uniquely recovered from this
ternary string by simply reading off the coefficients between each successive pair of 2’s. (Notice that this
mapping f : N(x)→{0,1,2}∗ is not onto (and hence not a bijection) since many ternary strings will not be
the image of any polynomials; this will be the case, for example, for any ternary strings that contain binary
subsequences with leading zeros.)

Hence we have an injection from N(x) to N, so N(x) is countable.

Cantor’s Diagonalization
So we have established that N, Z, Q all have the same cardinality. What about the real numbers, the set
of all points on the real line? Surely they are countable too? After all, the rational numbers, like the real
numbers, are dense (i.e, between any two rational numbers there is a rational number):

In fact, between any two real numbers there is always a rational number. It is really surprising, then, that
there are more real numbers than rationals. That is, there is no bijection between the rationals (or the natural
numbers) and the reals. In fact, we will show something even stronger: even the real numbers in the interval
[0,1] are uncountable!

Recall that a real number can be written out in an infinite decimal expansion. A real number in the interval
[0,1] can be written as 0.d1d2d3... Note that this representation is not unique; for example, 1 = 0.999...; for
definiteness we shall assume that every real number is represented as a recurring decimal where possible
(for example, we choose the representation 0.999 . . . rather than 1 and 0.14999 . . . rather than 0.15).

Cantor’s Diagonalization Proof: Suppose towards a contradiction that there is a bijection f : N→ [0,1].
Then, we can enumerate the infinite list as follows:

The number circled in the diagonal is some real number r = 0.5479 . . ., since it is an infinite decimal expan-
sion. Now consider the real number s obtained by modifying every digit of r, say by replacing each digit d
with d+2 mod 10; thus in our example above, s = 0.7691 We claim that s does not occur in our infinite

CS 70, Summer 2014, Note 19 4

list of real numbers. Suppose for contradiction that it did, and that it was the nth number in the list. Then r
and s differ in the nth digit: the nth digit of s is the nth digit of r plus 2 mod 10. So we have a real number
s that is not in the range of f . But this contradicts the assertion that f is a bijection. Thus the real numbers
are not countable.

Let us remark that the reason that we modified each digit by adding 2 mod 10 as opposed to adding 1 is
that the same real number can have two decimal expansions; for example 0.999... = 1.000.... But if two
real numbers differ by more than 1 in any digit they cannot be equal. Thus we are completely safe in our
assertion.

With Cantor’s diagonalization method, we proved that R is uncountable. What happens if we apply the same
method to Q, in a (futile) attempt to show the rationals are uncountable? Well, suppose for a contradiction
that our bijective function f : N→Q[0,1] produces the following mapping:

This time, let us consider the number q obtained by modifying every digit of the diagonal, say by replacing
each digit d with d +2 mod 10. Then in the above example q = 0.316..., and we want to try to show that it
does not occur in our infinite list of rational numbers. However, we do not know if q is rational. This is why
the method fails when applied to the rationals. When dealing with the reals, the modified diagonal number
was guaranteed to be a real number.

Self-Reference and The Liar’s Paradox
Propositions are statements that are either true or false. We saw before that some statements are not well
defined or too imprecise to be called propositions. But here is a statement that is problematic for more subtle
reasons: “All Cretans are liars.” So said a Cretan in antiquity, thus giving rise to the so-called liar’s paradox
which has amused and confounded people over the centuries. Actually the above statement isn’t really a
paradox; it simply yields a contradiction if we assume it is true, but if it is false then there is no problem. A
true formulation of this paradox is the following statement: “this statement is false.” Is the statement true? If
the statement is true, then what it asserts must be true; namely that it is false. But if it is false, then it must be
true. So it really is a paradox. Around a century ago, this paradox found itself at the center of foundational
questions about mathematics and computation.

We will now study how this paradox relates to computation. Before doing so, let us consider another
manifestation of the paradox, created by the great logician Bertrand Russell. In a village with just one
barber, every man keeps himself clean-shaven. Some of the men shave themselves, while others go to the
barber. The barber proclaims: “I shave all and only those men who do not shave themselves.” It seems
reasonable then to ask the question: Does the barber shave himself? Thinking more carefully about the
question though, we see that we are presented with a logically impossible scenario. If the barber does not
shave himself, then according to what he announced, he shaves himself. If the barber does shave himself,
then according to his statement he does not shave himself!

(Of course, the real solution to the barber paradox is simple: the barber is a woman.)

CS 70, Summer 2014, Note 19 5

The Halting Problem
Are there tasks that a computer cannot perform? For example, we would like to ask the following basic
question when compiling a program: does it go into an infinite loop? In 1936, Alan Turing showed that there
is no program that can perform this test. The proof of this remarkable fact is very elegant and combines two
ingredients: self-reference (as in the liar’s paradox), and the fact that we cannot separate programs from
data. In computers, a program is represented by a string of bits just as integers, characters, and other data
are. The only difference is in how the string of bits is interpreted.

We will now examine the Halting Problem. Given the description of a program and its input, we would like
to know if the program ever halts when it is executed on the given input. In other words, we would like to
write a program TestHalt that behaves as follows:

TestHalt(P,I) =
{

“yes”, if program P halts on input I
“no”, if program P loops on input I

Why can’t such a program exist? First, let us use the fact that a program is just a bit string, so it can be input
as data. This means that it is perfectly valid to consider the behavior of TestHalt(P,P), which will output
“yes” if P halts on P, and “no” if P loops forever on P. We now prove that such a program cannot exist.

Proof: Define the program

Turing(P)

if TestHalt(P,P) = "yes" then loop forever

else halt

So if the program P when given P as input halts, then Turing loops forever; otherwise, Turing halts. Assum-
ing we have the program TestHalt, we can easily use it as a subroutine in the above program Turing.

Now let us look at the behavior of Turing(Turing). There are two cases: either it halts, or it does not. If
Turing(Turing) halts, then it must be the case that TestHalt(Turing, Turing) returned “no.” But that would
mean that Turing(Turing) should not have halted. In the second case, if Turing(Turing) does not halt, then
it must be the case that TestHalt(Turing, Turing) returned “yes,” which would mean that Turing(Turing)
should have halted. In both cases, we arrive at a contradiction which must mean that our initial assumption,
namely that the program TestHalt exists, was wrong. Thus, TestHalt cannot exist, so it is impossible for a
program to check if any general program halts.

This is an example of diagonalization. Why? Since the set of all computer programs is countable (they are,
after all, just finite-length strings over some alphabet, and the set of all finite-length strings is countable), we
can enumerate all programs as follows (where Pi represents the ith program):

The (i, j)th entry is H if program Pi halts on input Pj, and L if it does not halt. Now if the program Turing
exists it must occur somewhere on our list of programs, say as Pn. But this cannot be, since if the nth entry in
the diagonal is H, meaning that Pn halts on Pn, then by its definition Turing loops on Pn; and if the entry is L,

CS 70, Summer 2014, Note 19 6

then by definition Turing halts on Pn. Thus the behavior of Turing is different from that of Pn, and hence
Turing does not appear on our list. Since the list contains all possible programs, we must conclude that the
program Turing does not exist. And since Turing is constructed by a simple modification of TestHalt, we
can conclude that TestHalt does not exist either. Hence the Halting Problem cannot be solved.

In fact, there are many more cases of questions we would like to answer about a program, but cannot. For
example, we cannot know if a program ever outputs anything or if it ever executes a specific line. We cannot
even definitively check to see if the program is a virus.

Uncomputable numbers
The fact that the real numbers are uncountably infinite and that there are only a countable number of com-
puter programs tells us that the vast majority of real numbers are fundamentally unknowable to computers.
The halting problem above tells us that many of them are also interesting. For example, consider the real
number between 0 and 1 whose ith binary digit is 0 if the ith computer program doesn’t halt and is 1 if the
ith computer program does halt. The halting problem argument tells us that this number is uncomputable.

In a very related proof, the logician Gödel showed that the following real number is also uncomputable.
Consider all finite strings of mathematical symbols involving ∀,∃, variables, as well as the arithmetic oper-
ations +,∗,−,/ and exponentiation, comparisons =,<,> and the logical operators ¬,∧,∨, =⇒ . A string
like that is either a syntax error or it is a valid proposition about the natural numbers. All such finite strings
are certainly countable. So we can talk about the ith such string. Consider the real number between 0 and
1 in which the ith digit is 0 if the string is a syntax error or the proposition is false. The ith digit is 1 if
the string is well-formed and the proposition it represents is true (i.e. there is no counterexample to it). The
resulting real number is uncomputable.

This turns out to mean that there are true statements about the integers for which there is no proof1. In a very
real sense, they just happen to be true for no good reason. The even more surprising consequence is that the
same uncomputability result holds if we replace “true” and “false” with “provable” and “unprovable.” Here,
we can consider a proposition provable if it is either a syntax error (syntax can be checked by a program), has
a counterexample, or has a valid proof. It is unprovable otherwise. So, not only are there lots of unprovable
assertions out there, but they are impossible for a computer program to reliably recognize2 as unprovable.

The proof of these facts is beyond the scope of the course, but is related to the deep connection between
proofs and computation. Computation is a kind of living proof.

Advanced Material On Counting
Please read on only if interested.

1This is assuming that (as many mathematicians believe) every mathematical statement must be true or false, even the ones we
can’t prove or disprove. A web search on the philosophy of mathematics will lead to some interesting reading.

2Being a valid proof can be checked by a computer program. Each statement has to follow logically from those that came
before. The number of potential proofs is countably infinite. The problem is that the program that simply compares statements to
all valid proofs is not guaranteed to halt! Because there are unprovable statements, it might just run forever and never a proof or
counterexample.

CS 70, Summer 2014, Note 19 7

The Cantor Set
The Cantor set is a remarkable set construction involving the real numbers in the interval [0,1]. The set is
defined by repeatedly removing the middle thirds of line segments infinitely many times, starting with the
original interval. For example, the first iteration would involve the removal of the interval (1

3 ,
2
3), leaving

[0, 1
3]∪ [

2
3 ,1]. The first three iterations are illustrated below:

The Cantor set contains all points that have not been removed: C = {x : x not thrown out}. How much of
the original unit interval is left after this process is repeated infinitely? Well, we start with 1, and after the
first iteration we remove 1

3 of the interval, leaving us with 2
3 . For the second iteration, we keep 2

3 ×
2
3 of the

original interval. As we repeat the iterations infinitely, we are left with:

1−→ 2
3 −→

2
3 ×

2
3 −→

2
3 ×

2
3 ×

2
3 −→ ·· · −→ lim

n→∞
(2

3)
n = 0

According to the calculations, we have removed everything from the original interval! Does this mean that
the Cantor set is empty? No, it doesn’t. What it means is that the measure of the Cantor set is zero; the
Cantor set consists of isolated points and does not contain any non-trivial intervals. In fact, not only is the
Cantor set non-empty, it is uncountable!3

To see why, let us first make a few observations about ternary strings. In ternary notation, all strings consist
of digits (called “trits”) from the set {0,1,2}. All real numbers in the interval [0,1] can be written in ternary
notation. (E.g, 1

3 can be written as 0.1, or equivalently as 0.0222 . . ., and 2
3 can be written as 0.2 or as

0.1222) Thus, in the first iteration, the middle third removed contains all ternary numbers of the form
0.1xxxxx. The ternary numbers left after the first removal can all be expressed either in the form 0.0xxxxx...
or 0.2xxxxx... (We have to be a little careful here with the endpoints of the intervals; but we can handle
them by writing 1

3 as 0.02222 . . . and 2
3 as 0.2.) The second iteration removes ternary numbers of the form

0.01xxxxx and 0.21xxxxx (i.e, any number with 1 in the second position). The third iteration removes 1’s
in the third position, and so on. Therefore, what remains is all ternary numbers with only 0’s and 2’s. Thus
we have shown that

C = {x ∈ [0,1] : x has a ternary representation consisting only of 0’s and 2’s}.

Finally, using this characterization, we can set up an onto map f from C to [0,1]. Since we already know that
[0,1] is uncountable, this implies that C is uncountable also. The map f is defined as follows: for x∈C, f (x)
is defined as the binary decimal obtained by dividing each digit of the ternary representation of x by 2. Thus,
for example, if x = 0.0220 (in ternary), then f (x) is the binary decimal 0.0110). But the set of all binary
decimals 0.xxxxx. . . is in 1-1 correspondence with the real interval [0,1], and the map f is onto because
every binary decimal is the image of some ternary string under f (obtained by doubling every binary digit).4

This completes the proof that C is uncountable.

3It’s actually easy to see that C contains at least countably many points, namely the endpoints of the intervals in the
construction—i.e, numbers such as 1

3 , 2
3 , 1

9 , 1
27 etc. It’s less obvious that C also contains various other points, such as 1

4 and
3

10 . (Why?)
4Note that f is not injective; for example, the ternary strings 0.20222 . . . and 0.22 map to binary strings 0.10111 . . . and 0.11

respectively, which denote the same real number. Thus f is not a bijection. However, the current proof shows that the cardinality
of C is at least that of [0,1], while it is obvious that the cardinality of C is at most that of [0,1] since C ⊂ [0,1]. Hence C has the
same cardinality as [0,1] (and as R).

CS 70, Summer 2014, Note 19 8

The Cantor set turns out to be an example of a set for which it is natural to define dimensionality differently.
It isn’t quite a 1d set (like a line segment) but it is certainly bigger than a 0d set (a countable collection of
isolated points). This is an example of a set with “fractional dimension” — also referred to as fractals.

Power Sets and Higher Orders of Infinity
Let S be any set. Then the power set of S, denoted by P(S), is the set of all subsets of S. More formally, it
is defined as: P(S) = {T : T ⊆ S}. For example, if S = {1,2,3}, then P(S) = {{},{1},{2},{3},{1,2},
{1,3},{2,3},{1,2,3}}.
What is the cardinality of P(S)? If |S| = k is finite, then |P(S)| = 2k. To see this, let us think of each
subset of S corresponding to a k bit string. In the example above the subset {1,3} corresponds to the string
101. A 1 in the ith position indicates that the ith element of S is in the subset and a 0 indicates that it is
not. Now the number of binary strings of length k is 2k, since there are two choices for each bit position.
Thus |P(S)|= 2k. So for finite sets S, the cardinality of the power set of S is exponentially larger than the
cardinality of S. What about infinite (countable) sets? We claim that there is no bijection from S to P(S),
so P(S) is not countable. Thus for example the set of all subsets of natural numbers is not countable, even
though the set of natural numbers itself is countable.

Theorem: Let S be countably infinite. Then |P(S)|> |S|.
Proof: Suppose towards a contradiction that there is a bijection f : S→P(S). Recall that we can represent
a subset by a binary string, with one bit for each element of S. (So, since S is infinite, the string will be
infinitely long. Contrast the case of {0,1}∗ discussed earlier, which consists of all binary strings of finite
length.) Consider the following diagonalization picture in which the function f maps natural numbers x to
binary strings which correspond to subsets of S (e.g, 2→ 10100... = {0,2}):

In this case, we have assigned the following mapping: 0 → {0}, 1 → {}, 2 → {0,2}, . . . (i.e, the nth row
describes the nth subset as follows: if there is a 1 in the kth column, then k is in this subset, else it is not.)
Using a similar diagonalization argument to the earlier one, flip each bit along the diagonal: 1 → 0, 0 →
1, and let b denote the resulting binary string. First, we must show that the new element is a subset of S.
Clearly it is, since b is an infinite binary string which corresponds to a subset of S. Now suppose b were the
nth binary string. This cannot be the case though, since the nth bit of b differs from the nth bit of the diagonal
(the bits are flipped). So it’s not on our list, but it should be, since we assumed that the list enumerated all
possible subsets of S. Thus we have a contradiction, implying that P(S) is uncountable.

Thus we have seen that the cardinality of P(N) (the power set of the natural numbers) is strictly larger
than the cardinality of N itself. The cardinality of N is denoted ℵ0 (pronounced “aleph null”), while that of
P(N) is denoted 2ℵ0 . It turns out that in fact P(N) has the same cardinality as R (the real numbers), and
indeed as the real numbers in [0,1]. This cardinality is known as c, the “cardinality of the continuum.” So
we know that 2ℵ0 = c > ℵ0. Even larger infinite cardinalities (or “orders of infinity”), denoted ℵ1,ℵ2, . . .,

CS 70, Summer 2014, Note 19 9

can be defined using the machinery of set theory; these obey (to the uninitiated somewhat bizarre) rules of
arithmetic. Several fundamental questions in modern mathematics concern these objects. For example, the
famous “continuum hypothesis” asserts that c = ℵ1 (which is equivalent to saying that there are no sets with
cardinality between that of the natural numbers and that of the real numbers).

CS 70, Summer 2014, Note 19 10

