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An Introduction to Graphs
A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem. They
wanted to know whether it was possible to walk through their city, represented in the image below, by
crossing each bridge only once.

This problem is called The Seven Bridges of Königsberg, and in 1736 the brilliant mathematician Leonhard
Euler proved that such a task was impossible. Euler did this by modeling the arrangement of bridges as a
graph (or, more accurately, a multigraph since there can be multiple edges between the same pair of vertices).
For this reason, Euler is generally hailed as the inventor of graph theory.

The relevant features of the seven bridge problem are the two islands (B and C), the two banks (A and D),
and the bridges between these areas. All of these features can be represented by a graph, as shown on the
right in the image above. The two islands and each bank are represented by the 4 little circles, which are
called vertices. The bridges are represented by the lines between the vertices, called the edges of the graph.
(Include labels for vertices/edges?) This graph happens to be undirected, since the bridges can be crossed
in either direction. If we instead had one-way bridges, the graph would be directed.

More formally, a directed graph G(V,E) consists of a finite set of vertices V and a set of edges E. E is a set
of pairs (u,v) of vertices1. An edge (v,w) in a directed graph is usually indicated by drawing a line between
v and w, with an arrow pointing towards w. Undirected graphs may be regarded as special kinds of directed
graphs, in which (u,v) ∈ E if and only if (v,u) ∈ E. Thus in an undirected graph the directions of the edges
are unimportant, so an edge of an undirected graph is an unordered pair of vertices {u,v} and is indicated
by a line between u and v with no arrow.

As we have defined them, graphs are allowed to have self-loops; i.e, edges of the form (u,u) that go from a
vertex u to itself. Usually, however, graphs are assumed to have no self-loops unless otherwise stated, and
we will assume this from now on. We will also be working only with graphs, and not multigraphs such as
the one representing the bridges of Königsberg.

A path in a directed graph G = (V,E) is a sequence of edges (v1,v2),(v2,v3), ...,(vn−2,vn−1),(vn−1,vn). In
this case we say that there is a path between v1 and vn. A path in an undirected graph is defined similarly.
Usually a path is assumed to be simple, meaning v1, . . . ,vn are distinct. A path with repeated vertices will be
called a walk. A cycle (or circuit) is a sequence of edges (v1,v2),(v2,v3), ,(vn−2,vn−1),(vn−1,vn),(vn,v1),
where v1, . . . ,vn are distinct. A tour is a walk which starts and ends at the same vertex. A graph is said to be

1Another way to say this is that E is a subset of V ×V , where V ×V is the Cartesian product of V with itself.
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connected if there is a path between any two distinct vertices.

We say that an edge (u,v) is incident to vertices u and v, and vertices u and v are neighbors or adjacent. If
G = (V,E) is an undirected graph then the degree of vertex u ∈ V is the number of edges incident to u, i.e,
degree(u) = |{v ∈ V : {u,v} ∈ E}|. A vertex u whose degree is 0 is called an isolated vertex, since there
is no edge which connects u to the rest of the graph. In a directed graph, the in-degree of a vertex u is the
number of edges from other vertices to u, and the out-degree of u is the number of edges from u to other
vertices.

Eulerian Walks and Tours
We can now restate the problem above in the language of graphs: is there a walk in the graph that uses each
edge exactly once? This type of walk is called an Eulerian walk. An Eulerian tour is a tour that uses each
edge exactly once.

Let an even degree graph be a graph in which all vertices have even degree. The next theorem gives necessary
and sufficient conditions for a graph to have an Eulerian tour.

Euler’s Theorem: An undirected graph G= (V,E) has an Eulerian tour if and only if the graph is connected
(except possibly for isolated vertices) and even degree.

Proof (=⇒): Assume that the graph has an Eulerian tour. This means every vertex that has an edge adjacent
to it (i.e, every non-isolated vertex) must lie on the tour, and is therefore connected with all other vertices on
the tour. This proves that the graph is connected (except for isolated vertices).

Next note that, for each vertex in the tour except the first (and last), the tour leaves it in the next step after
entering it. Thus, every time the tour visits a vertex, it traverses exactly two edges incident to it. Since the
Eulerian tour uses each edge exactly once, this implies that every vertex except the first has even degree.
And the same is true of the first vertex v as well because the first edge leaving v can be paired up with the
last edge returning to v. This completes the proof of this direction.

Proof (⇐=): Assume that G = (V,E) is connected and even degree. We will show how to construct an
Eulerian tour in G. We will begin walking from a vertex u, never repeating edges. Since the graph is even
degree, each time the walk enters a vertex, it must be able to exit as well. Our walk can therefore only end
on u; it will be a tour. The claim below formalizes this intuition:

Claim 1 In an even degree graph, a walk starting from a vertex u can only get stuck at u.

Let’s call the resulting tour A. Is it Eulerian? Not necessarily; our tour may not encounter all edges in the
graph. Consider the image below- our algorithm could have resulted in tour A, which does not traverse edges
along B and is therefore not Eulerian.

To continue, we will remove A from G and create a new tour B on the remaining edges. We can do this
because the remaining graph (consisting of the remaining edges) still has even degree:

CS 70, Summer 2014, Note 9 2



Claim 2 Removing a tour from an even degree graph will result in an even degree graph.

However, since our eventual goal is to create a single Eulerian tour. So we must splice tours A and B together
into a single tour that traverses each of them. We can only do this if they intersect — there must be some
edge of B such that one of its endpoints lies on A. The following claim says there is always an untraversed
edge "hanging" from A (we will use this edge as our starting point to discover tour B):

Claim 3 Let A be a tour in a connected (except for isolated vertices) graph G. If A does not contain
all edges in G, there exists an edge {u,v} such that A passes through u but does not contain {u,v}.

We can now begin walking from u, using only edges that did not occur in A. By Claim 2, the removal of
edges of A results in an even degree graph and therefore by Claim 1, this new walk will get stuck at u,
creating tour B. We can combine A with B by splicing the two together: we start walking along A until we
reach u, and then walk along B until we return to u, and then return to walking along A until we finish. If
this new tour does not include all edges in G, Claim 3 implies that there exists an untraversed edge which is
connected to the tour. We can then repeat the process.

Here is a possible scenario:

If the above image is the graph in question, our first tour could be tour A. Our second tour could be tour B.
We splice the first two tours together by starting at point 1, walking along A until we reach point 2, walking
along B until we return to point 2, and finishing our walk along A, ending back at point 1. Call this tour T .
We then create another tour C. To splice T and C together, we walk along T until reaching point 3, then walk
along C until returning to point 3, and then finish our walk along T . The final walk would be an Eulerian
tour.

We now prove all the claims above.

Proof of Claim 1

First consider a walk from u to v. For a vertex w, let n(w) be the number of edges on the walk incident to
w. Let’s say we get stuck at v. Then n(v) is odd; we have entered v but not exited. However, since v is
even degree, there must be at least one unused edge incident to v, which we can use to exit v. Therefore, we
cannot get stuck at v.

Proof of Claim 2

If we removed the edges traversed by a tour, we are decreasing the degree of each vertex w by n(w). Since a
tour exits each vertex as often as it enters and our tour does not have any repeated edges, n(w) must be even
for all w. Therefore, the degree of each vertex remains even.
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Proof of Claim 3

Suppose A does not contain all edges in the graph G. Let {x,y} be an edge not in the tour. If x is on A then
we are done. Otherwise, since the graph is connected, there is a path from vertex a on tour A to vertex x.
This path starts with a vertex on A and ends with a vertex not on A. As we traverse the path from a to x,
there must be a first time it touches a vertex v not on the tour A (you can formally prove this by induction!).
The previous vertex u must be on the tour, and so {u,v} is the desired edge.

Trees
A graph is a tree if it is connected and acyclic (contains no cycles). There are many other equivalent
definitions. For example, a tree is a connected graph where the number of vertices is one more than the
number of edges. Or, a tree is a connected graph such that if you delete any edge it becomes disconnected.

Planar Graphs
A graph is planar if it can be drawn on the plane without crossings. For example, the first four graphs shown
below are planar. Notice that the first and second graphs are the same, but drawn differently. Even though
the second drawing has crossings, the graph is still considered planar since it is possible to draw it without
crossings.

The other three graphs are not planar. The first one of them is the infamous “three houses-three wells graph,”
also called K3,3. The second is the complete graph with five nodes, or K5. The third is the four-dimensional
cube. We shall soon see how to prove that all three graphs are non-planar.
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When a planar graph is drawn on the plane, one can distinguish, besides its vertices (their number will be
denoted v here) and edges (their number is e), the faces of the graph (more precisely, of the drawing). The
faces are the regions into which the graph subdivides the plane. One of them is infinite, and the others are
finite. The number of faces is denoted f . For example, for the first graph shown f = 4, and for the fourth
(the cube) f = 6.

One basic and important fact about planar graphs is Euler’s formula, v+ f = e+2 (check it for the graphs
above). It has an interesting story. The ancient Greeks knew that this formula held for all polyhedra (check
it for the cube, the tetrahedron, and the octahedron, for example), but could not prove it. How do you do
induction on polyhedra? How do you apply the induction hypothesis? What is a polyhedron minus a vertex,
or an edge? In the 18th century Euler realized that this is an instance of the inability to prove a theorem by
induction because it is too weak, something that we saw time and again when we were studying induction.
To prove the theorem, one has to generalize polyhedra. And the right generalization is planar graphs.

Can you see why planar graphs generalize polyhedra? Why are all polyhedra (without “holes”) planar
graphs?

Theorem 9.1: (Euler’s formula) For every connected planar graph, v+ f = e+2

Proof: By induction on e. It certainly holds when e = 0, and v = f = 1. Now take any connected planar
graph. Two cases:

• If it is a tree, then f = 1 (drawing a tree on the plane does not subdivide the plane), and e = v− 1
(check homework).

• If it is not a tree, find a cycle and delete any edge of the cycle. This amounts to reducing both e and
f by one. By induction the formula is true in the smaller graph, and so it must be true in the original
one.

�

What happens when the graph is not connected? How does the number of connected components enter the
formula?

Take a planar graph with f faces, and consider one face. It has a number of sides, that is, edges that bound
it clockwise. Note that an edge may be counted twice, if it has the same face on both sides, as it happens for
example in a tree (such edges are called bridges). Denote by si the number of sides of face i. Now, if we add
the si’s we are going to get 2e, because each edge is counted twice, once for the face on its right and once
for the face on its left (they may coincide if the edge is a bridge). We conclude that, in any planar graph,

f

∑
i=1

si = 2e. (1)

Now notice that, since we don’t allow parallel edges between the same two nodes, and if we assume that
there are at least two edges, every face has at least three sides, or si ≥ 3 for all i. It follows that 3 f ≤ 2e.
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Solving for f and plugging into Euler’s formula we get

e≤ 3v−6.

This is an important fact. First it tells us that planar graphs are sparse, they cannot have too many edges.
A 1,000-vertex connected graph can have anywhere between a thousand and half a million edges. This
inequality tells us that for planar graphs the range is very small, between 999 and 2,994.

It also tells us that K5 is not planar: Just notice that it has five vertices and ten edges.

K3,3 has v = 6,e = 9 so it passes the planarity test with flying colors. We must think a little harder to show
that K3,3 is non-planar. Notice that, if we had drawn it on the plane, there would be no triangles. Because
a triangle means that two wells or two houses are connected together, which is false. So, Equation (1) now
gives us 4 f ≤ 2e, and solving for f and plugging into Euler’s formula, e≤ 2v−4, which shows that K3,3 is
non-planar.

So, we have established that K5 and K3,3 are both non-planar. There is something deeper going on: In some
sense, these are the only non-planar graphs. This is made precise in the following famous result, due to the
Polish mathematician Kuratowski (this is what “K” stands for).

Theorem 9.2: A graph is non-planar if and only if it contains K5 or K3,3.

“Contains” here means that one can identify nodes in the graph (five in the case of K5, six in the case of K3,3)
which are connected as the corresponding graph through paths (possibly single edges), and such that no two
of these paths share no vertex. For example, the 4-cube shown below is non-planar, because it contains K3,3,
as shown.

Can you find K5 in the same graph?

One direction of Kuratowski’s theorem is obvious: If a graph contains one of these two non-planar graphs,
then of course it is itself non-planar. The other direction, namely that in the absence of these graphs we can
draw any graph on the plane, is difficult. For a short proof you may want to type “proof of Kuratowski’s
theorem” in your favorite search engine.

Duality and Coloring
There is an interesting duality between planar graphs. For example, the Greeks knew that the octahedron
and the cube are “dual” to each other, in the sense that the faces of one can be put in correspondence with the
vertices of the other (think about it). The tetrahedron is self-dual. And the dodecahedron and the icosahedron
(look for images in the web if you don’t know these pretty things) are also dual to one another.
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What does this mean? Take a planar graph G, and assume it has no bridges and no degree-two nodes. Draw
a new graph G∗: Start by placing a node on each face of G. Then draw an edge between two faces if they
touch at an edge — draw the new edge so that it crosses that edge. The result is G∗, also a planar graph.
Notice now that, if you construct the dual of G∗, it is the original graph: (G∗)∗ = G.

Duality is a convenient consideration when thinking about planar graphs. Also, it tells us that “coloring
a political map so that no two countries who share a border have the same color” is the same problem as
“coloring the vertices of a planar graph (the dual of the political map) so that no two adjacent vertices have
the same color.” A famous theorem states that four colors are always enough! (Search for “four color
theorem”.) We shall prove something weaker:

Theorem 9.3: Every planar graph can be colored with five colors.

Proof: Induction on v. The base case is not worth talking about, so we go directly to the inductive step.
Let G be a planar graph. I claim there is a node of degree five or less. In proof, consider the inequality
e≤ 3v−6. If all vertices had degree six or more, then e would be at least 3v.

So, consider a node u of degree five or less. If it has degree four or less, we are done: Remove u, color the
remaining graph with 5 colors (by induction), and then put u back in and color it by a color that is missing
from its neighbors.

So, u must have 5 vertices, and in the coloring of G−u they all got different colors. Look at them clockwise
around u, and call them u1,u2,u3,u4,u5, and their colors 1,2,3,4,5. Now try to change the color of u2 to
color 4. If you can legally do it, we are done, because then you color u2 by color 4, and color u by color 2.
But this may not be possible, because there is a neighbor of u2 colored 4. So we try to color that node 2.
And so on. If this process ever succeeds, you are done by a chain of color changes. The only way that it can
fail is if it ends up at the neighbor u4 of u. That is, there is path from u2 to u4 of nodes colored 2 and 4.

Similarly, we can try to change the color of u1 to 3, and this will succeed unless there is a path from u1 to u3
colored 1 and 3.

If both of these attempts fail, then we get two paths: one from u1 to u3 colored 1 and 3, and the other from
u2 to u4 colored 2 and 4. But planarity says that these two paths must intersect at some vertex. What is the
color of this vertex? �
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