

Ethernet

EE 122: Intro to Communication Networks
Fall 2010 (MW 4-5:30 in 101 Barker)
Scott Shenker
TAs: Sameer Agarwal, Sara Alspaugh, Igor Ganichev, Prayag Narula http://inst.eecs.berkeley.edu/~ee122/
Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC Berkeley

Announcements

- HW\#2 and Project 1A due today
- Midterm next Monday
- Review next lecture
- Extended office hours on Today/Wednesday
- I'll be available as long as line lasts
- Change in lecture schedule
- Control protocols moved to after midterm.... 2

Ethernet (Single Segment)

Binary Exponential Backoff (BEB)

- Think of time as divided in slots
- After each collision, pick a slot randomly within next 2^{m} slots
-Where m is the number of collisions since last successful transmission
- Questions:
-Why backoff?
-Why random?
-Why 2^{m} ?
-Why not listen while waiting?

Behavior of BEB Under Light Load

Look at collisions between two nodes

- First collision: pick one of the next two slots
- Chance of success after first collision: 50%
-Average delay 1.5 slots
- Second collision: pick one of the next four slots
-Chance of success after second collision: 75\%
-Average delay 2.5 slots
- In general: after $\mathrm{m}^{\text {th }}$ collision
-Chance of success: 1-2-m
-Average delay (in slots): $1 / 2+2^{(m-1)}$

BEB: Reality vs Theory

- In reality, binary exponential backoff (BEB)
- Performs well (far from optimal, but no one cares)
- Large data packets are ~ 23 times as large as minimal slot
- Is mostly irrelevant
o Almost all current ethernets are switched
- In theory, a very interesting algorithm
- Stability of algorithm for finite N only proved in 1985 o Ethernet can handle nonzero traffic load without collapse (duh!)
- All backoff algorithms unstable for infinite N (1985) o Poisson model: infinite user pool, whose total demand is finite o Not of practical interest

MAC "Channel Capture" in BEB

- Two hosts, each with infinite packets to send
- With BEB, there is a finite chance that the first one to have a successful transmission will never relinquish the channel
- The other host will never send a packet

Example

- Two hosts, each with infinite packets to send
-Slot 1: collision
-Slot 2: each resends with prob $1 / 2$
o Assume host A sends, host B does not
-Slot 3: A and B both send (collision)
-Slot 4: A sends with probability $1 / 2, B$ with prob. $1 / 4$ - Assume A sends, B does not
-Slot 5: A definitely sends, B sends with prob. $1 / 4$ o Assume collision
-Slot 6: A sends with probability $1 / 2$, B with prob. $1 / 8$
- Conclusion: if A gets through first, the prob. of B sending successfully halves with each collision

Insight

- Σ ProbSendInNextSlot(after k collisions):
- Sum of probabilities of success for "losing" host o Will it resend on first slot? If not, it will lose again
- If sum is infinite, then losing host will eventually win
- If sum is finite, then losing host might never win
- Let $F(i)=$ DelayBeforeSend(after i collisions)
$-(\Sigma F(i)) / F(k)$ is ratio of number of successes for winning host before the $\mathrm{k}^{\text {th }}$ collision vs average delay for losing host after the $\mathrm{k}^{\text {th }}$ solution (before trying to send)
o If diverges, then percentage of wasted time waiting for losing host to start up after winner finishes emptying queue is small

Necessary Mathematical Facts....

- $\Sigma 2^{-i}$ is finite
- Σi^{-p} is finite for $p>1$
- Σi^{-p} is infinite for $p \leq 1$

More Mathematical Facts....
Sums are from $i=1$ to $i=k$.

- ($\Sigma 2^{\mathrm{i}} / 2^{\mathrm{k}}$ remains finite k grows
- ($(\mathrm{ip}) / \mathrm{k}^{\mathrm{p}}$ diverges as k grows

Ethernet Frame Structure

- Sending adapter encapsulates packet in frame

- Preamble: synchronization
-Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
-Used to synchronize receiver \& sender
- Type: indicates the higher layer protocol
-Usually IP (but also Novell IPX, AppleTalk, ...)
- CRC: cyclic redundancy check
-Receiver checks \& simply drops frames with errors

Ethernet, con' t

- Connectionless
-No handshaking between sending and receiving adapter
- Unreliable
- Receiving adapter doesn't send ACKs or NACKs
- Packets passed to network layer can have gaps
- Gaps will be filled if application is using TCP
- Otherwise, application will see the gaps
- 2,700 page IEEE 802.3 standardization
-http://standards.ieee.org/getieee802/802.3.html
- Note, "classical" Ethernet has no length field ...
- ... instead, sender pauses $9.2 \mu \mathrm{sec}$ when done
-802.3 shoehorns in a length field

Different Backoff Functions

- Exponential: backoff ~ ai
- Channel capture (loser might not send until winner idle)
-Efficiency less than 1 (time wasted waiting for loser to start)
- Superlinear polynomial: backoff ~ip p>1
- Channel capture
-Efficiency is 1 (for any finite N)
- Sublinear polynomial: backoff ~ip $p \leq 1$
- No channel capture (loser not shut out)
-Efficiency is less than 1 (and goes to zero for large N) - Time wasted resolving collisions

Ethernet Frame Structure (Continued)

- Addresses: 48-bit source and destination MAC addresses
- Receiver's adaptor passes frame to network-level protocol o If destination address matches the adaptor's o Or the destination address is the broadcast address (ff:ff:ff:ff:ff:ff) o Or the destination address is a multicast group receiver belongs to o Or the adaptor is in promiscuous mode
- Addresses are globally unique
o Assigned by NIC vendors (top three octets specify vendor)
- During any given week, >500 vendor codes seen at LBNL
- Data:
- Maximum: 1,500 bytes
- Minimum: 46 bytes (+14 bytes header +4 byte trailer $=512$ bits)

16

Benefits of Ethernet

- Easy to administer and maintain
- Inexpensive
- Increasingly higher speed
- Evolvable!

Evolution of Ethernet

- Changed everything except the frame format
-From single coaxial cable to hub-based star
- From shared media to switches
-From electrical signaling to optical

Ethernet (Multiple Segments)

- Lesson \#1
- The right interface can accommodate many changes
- Implementation is hidden behind interface
-Lesson \#2
-Really hard to displace the dominant technology
-Slight performance improvements are not enough

Shuttling Data at Different Layers

- Different devices switch different things
- Physical layer: electrical signals (repeaters and hubs)
-Link layer: frames (bridges and switches)
- Network layer: packets (routers)

Key Distinction

- Routers: forward based on IP headers
- Switches/Bridges: forward based on MAC addresses
- Repeaters/Hubs: broadcast all bits

Physical Layer: Hubs

- Joins multiple input lines electrically - Do not necessarily amplify the signal
- Very similar to repeaters
-Also operates at the physical layer

Limitations of Repeaters and Hubs

- One large collision domain
-Every bit is sent everywhere
-So, aggregate throughput is limited
-E.g., three departments each get 10 Mbps independently
- \ldots and then if connect via a hub must share 10 Mbps
- Cannot support multiple LAN technologies
- Repeaters/hubs do not buffer or interpret frames
-So, can't interconnect between different rates or formats
-E.g., no mixing 10 Mbps Ethernet \& 100 Mbps Ethernet
- Limitations on maximum nodes and distances
- Does not circumvent limitations of shared media
-E.g., still cannot go beyond 2500 meters on Ethernet 25

Link Layer: Switches / Bridges

- Connect two or more LANs at the link layer
- Extracts destination address from the frame
- Looks up the destination in a table
- Forwards the frame to the appropriate LAN segment o Or point-to-point link, for higher-speed Ethernet
- Each segment is its own collision domain (if not just a link)

Advantages Over Hubs \& Repeaters

- Only forwards frames as needed
-Filters frames to avoid unnecessary load on segments
-Sends frames only to segments that need to see them
- Extends the geographic span of the network
- Separate collision domains allow longer distances
- Improves privacy by limiting scope of frames
-Hosts can "snoop" the traffic traversing their segment
- ... but not all the rest of the traffic
- Applies CSMA/CD in segment (not whole net)
-Smaller collision domain
- Joins segments using different technologies

Disadvantages Over Hubs \& Repeaters

- Higher cost
- More complicated devices that cost more money
- Delay in forwarding frames
-Bridge/switch must receive and parse the frame
- ... and perform a look-up to decide where to forward
- Introduces store-and-forward delay
o Can ameliorate using cut-through switching
- Start forwarding after only header received
- Need to learn where to forward frames
-Bridge/switch needs to construct a forwarding table
- Ideally, without intervention from network administrators
- Solution: self-learning

Motivation For Self Learning

- Large benefit if switch/bridge forward frames only on segments that need them
- Allows concurrent use of other links
- Switch table
- Maps destination MAC address to outgoing interface
-Goal: construct the switch table automatically

Solution: Spanning Trees

- Ensure the forwarding topology has no loops
- Avoid using some of the links when flooding
- ... to prevent loop from forming
- Spanning tree (K\&R pp. 411-413)
-Sub-graph that covers all vertices but contains no cycles
-Links not in the spanning tree do not forward frames

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
-Forward the frame out all of the interfaces ("flooding")
o ... except for the one where the frame arrived
-Hopefully, this case won't happen very often
-When destination replies, switch learns that node, too

32

Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
- Upon receiving a frame with an unfamiliar destination
- Upon receiving a frame sent to the broadcast address
- Implemented by flooding
- Flooding can lead to forwarding loops
- E.g., if the network contains a cycle of switches o Either accidentally, or by design for higher reliability
- "Broadcast storm"

Constructing a Spanning Tree

- Need a distributed algorithm
- Switches cooperate to build the spanning tree
- ... and adapt automatically when failures occur
- Key ingredients of the algorithm
- Switches need to elect a root o The switch w/ smallest identifier (MAC addr)
-Each switch determines if its interface is on the shortest path from the root o Excludes it from the tree if not
- Messages (Y, d, X) o From node X
- Proposing Y as the root o And the distance is d

One hop

Steps in Spanning Tree Algorithm

- Initially, each switch proposes itself as the root - Switch sends a message out every interface - ... proposing itself as the root with distance 0 -Example: switch X announces ($\mathrm{X}, 0, \mathrm{X}$)
- Switches update their view of the root
- Upon receiving message (Y, d, Z) from Z, check Y's id
- If new id smaller, start viewing that switch as root
- Switches compute their distance from the root
- Add 1 to the distance received from a neighbor
- Identify interfaces not on shortest path to the root
$-\ldots$ and exclude them from the spanning tree
- If root or shortest distance to it changed, flood updated message ($\mathrm{Y}, \mathrm{d}+1, \mathrm{X}$)

Example From Switch \#4' s Viewpoint

- Switch \#4 thinks it is the root
- Sends $(4,0,4)$ message to 2 and 7
- Then, switch \#4 hears from \#2
-Receives (2, 0, 2) message from 2
$-\ldots$ and thinks that \#2 is the root
- And realizes it is just one hop away
- Then, switch \#4 hears from \#7
-Receives $(2,1,7)$ from 7

-And realizes this is a longer path
-So, prefers its own one-hop path
-And removes 4-7 link from the tree

Robust Spanning Tree Algorithm

- Algorithm must react to failures
- Failure of the root node
o Need to elect a new root, with the next lowest identifier
-Failure of other switches and links
o Need to recompute the spanning tree
- Root switch continues sending messages
-Periodically reannouncing itself as the root (1, 0,1)
- Other switches continue forwarding messages
- Detecting failures through timeout (soft state)
- If no word from root, times out and claims to be the root
-Delay in reestablishing spanning tree is major problem in modern datacenters
- Work on rapid spanning tree algorithms.

Moving From Switches to Routers

- Advantages of switches over routers
-Plug-and-play
-Fast filtering and forwarding of frames
- Disadvantages of switches over routers
- Topology restricted to a spanning tree
- Large networks require large ARP tables
- Broadcast storms can cause the network to collapse
- Can't accommodate non-Ethernet segments (why not?)

Comparing Hubs, Switches \& Routers

	hubs	switches	$\frac{\text { routers }}{}$
traffic isolation	no	yes	yes
plug \& play	yes	yes	no
optimized routing	no	no	yes

Summary

- Ethernet as an exemplar of link-layer technology
- Simplest form, single segment:
- Carrier sense, collision detection, and random access
- Extended to span multiple segments:
-Hubs \& repeaters: physical-layer interconnects
-Bridges / switches: link-layer interconnects
- Key ideas in switches
-Self learning of the switch table
-Spanning trees
- Next time: midterm review

