EE122: Introduction to Computer Networks Homework 5
Department of Electrical Engineering and Computer Sciences SOLUTIONS
UNIVERSITY OF CALIFORNIA BERKELEY

Total points = 10

Question 1 (1 point)

The 32 receives are shown connected to the sender in the binary tree configuration shown
in Figure 1. With network-layer broadcast, a copy of the message is forwarded over each
link exactly once. There are thus 62 link crossings (2+4+8+16+32). With unicast emulation,
the sender unicasts a copy to each receiver over a path with 5 hops. There are thus 160 link
crossings (5 x 32).

A topology in which all receivers are in a line, with the sender at one send of the line, will
have the largest disparity between the cost of network-layer broadcast and unicast emulation.

Figure 1: Tree for Question 1

Question 2 (1 point)
Dijkstra’s algorithm for the network in Figure 2, with node A as the source, results in a
leastunicast- cost path tree of links AC, AB, and BD, with an overall free cost of 20. The
minimum spanning tree contains links AB, BD, and DC, at a cost of 11.

Figure 2: Network for Question 2



Question 3 (1 point)

As shown in the figure below, after 1 step 3 copies are transmitted, after 2 steps 6 copies are
transmitted. After 3 steps, 12 copies are transmitted, and so on. After k steps, 3 - 2¢~1 copies
will be transmitted in that step.
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Question 4 (1 point)

(@ ri—ti+ro—to+...+rp_1 —ty_1 = (n—1)-d,_1. Substituting this into the expression
Tn — tn

—1
for d,, gives d,, = L cdp_1+
n

(b) The delay estimate in part (a) is an average of the delays. It gives equal weight to recent
delays and to “old” delays. The delay estimate in Section 6.3 gives more weight to recent
delays; delays in the distant past have relatively little impact on the estimate.

Question 5 (1 point)

(a) Both schemes require 25% more bandwidth. The first scheme has a playback delay of 5
q play y
packets. The second scheme has a delay of 2 packets.

(b) The first scheme will be able to reconstruct the original high-quality audio encoding.
The second scheme will use the low quality audio encoding for the lost packets and will
therefore have lower overall quality.

(c) For the first scheme, many of the original packets will be lost and audio quality will be
very poor. For the second scheme, every audio chunk will be available at the receiver,
although only the low quality version will be available for every other chunk. Audio
quality will be acceptable.

Question 6 (2 points)

Let 7 be a time at which flow 1 traffic starts to accumulate in the queue. We refer to 7 as the
beginning of a flow-1 busy period. Let ¢t > 7 be another time in the same flow-1 busy period.
Let T' (7, t) be the amount of flow-1 traffic transmitted in the interval [r, t]. Clearly,
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Let Q1 (t) be the amount of flow-1 traffic in the queue at time ¢. Clearly,
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Since r < 27 R, Q1(t) < b1. Thus, the maximum amount of flow-1 traffic in the queue
J
is b1. The minimal rate at which this traffic is served is VSWR
J

Thus, the maximum delay for a flow-1 bit is
by g
Question 7 (3 points)

1. Total number of information bits per codeword = m x m = m?. Total number of bits
m? _ 1
m2+2m 1+ (2/m)’

per codeword = m? + m + m = m? + 2m. Therefore, data rate =
2
1

m° S 1
m2+1 1+ (1/m?) " 1+ (2/m)
parity check code has less redundancy compared to the 2-D code.

Data rate for the single parity code is . So, the single

2. For m = 3, there are 3* = 9 data bits. Since each data bit can independently be 0 or

1 and fixing the data bits fixes the corresponding codeword, we get 2° = 512 possible
codewords.
The minimum hamming distance for this 2-D code is 3. To see this, consider an arbitrary
codeword. If we flip one message bit, then the corresponding row parity and column
parity bits get flipped. So, the minimum hamming distance is more than 1. If we flip two
message bits, then they must be in distinct columns or distinct rows. So, at least those
two distinct column parity or row parity bits will flip resulting in at least 4 bits getting
flipped. Thus, dn > 2. Furthermore, the single bit flip case shows that d,;,;, = 3.

3. Note that in the argument in part (b), we never used the fact that m = 3, so it applies to
all m. Thus, d,:, = 3 for general m.

4. Since the minimum hamming distance d,;, = 3, we are guaranteed to detect up to
dmin — 1 = 2 bit errors. An example of an undetected 3-bit error pattern is a message
bit and the corresponding row parity bit and the column parity bit flipping. Since, in all
rows and columns, even number of bits flip, the resulting word is a codeword and hence
the error is undetected.

5. Since dy,in, = 3, we can correct up to (3 — 1)/2 = 1 bit errors. An example of an uncor-
rectable 2-bit error pattern is when a message bit and its corresponding row parity bit



get flipped. Suppose, two bits flip in a codeword ¢ in such a manner. For the resulting
word, flipping the corresponding column bit gives us another codeword (call it ¢). Now,
we cannot figure out whether ¢ was transmitted and 2 bits flipped or ¢’ was transmitted
and 1 bit flipped. Thus, this error pattern cannot be corrected.
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Data rate now = — < . So, this code has more redundancy than
(m+1)2 "1+ (1/m?)
the single parity code.

Since the number of message bits remains unchanged, we again have 512 code-
words. The minimum hamming distance d,;, = 4. To see this, consider an arbitrary
codeword. If we flip 1 message bit, the corresponding row parity and column parity
bits get flipped. Furthermore, the extra bit also flips since exactly one row parity
bit flipped. So, 4 bits flipped in this case. For the case of 2 message bits flipping,
the argument from part (2) still applies (because we only added an extra bit without
modifying the other bits). This means that if 2 message bits flip, then at least 4 bits
flip in total. Now consider the case of 3 message bits flipping. So, it must be the case
that at least one row or column has exactly one message bit flipped. For this row or
column, the corresponding parity bit also gets flipped. This means that at least 4 bits
get flipped in total. So, d,in > 3. Furthermore, the case of 1 message bit flipping
implies that d,,;, = 4.

Note that the argument in part (b) did not use the fact that m = 3. So, we have
dpmin = 4 for all m.

Since the minimum hamming distance d,,;, = 4, we are guaranteed to detect up
to dmin, — 1 = 3 bit errors. An example of an undetected 4-bit error pattern is a
message bit and the corresponding row parity bit, the column parity bit and the
extra redundancy bit flipping. Since, in all rows and columns, even number of bits
flip, the resulting word is a codeword and hence the error is undetected.

Since d,,;n = 4, we can correct up to | (4 — 1)/2] = 1 bit errors. An example of an
uncorrectable 2-bit error pattern is when a message bit and its corresponding row
parity bit get flipped. Suppose, two bits flip in a codeword ¢ in such a manner. For
the resulting word, flipping the corresponding column bit and the extra redundancy
bit gives us another codeword (call it ¢’). Now, we cannot figure out whether ¢ was
transmitted and 2 bits flipped or ¢’ was transmitted and 2 bits flipped. Thus, this
error pattern cannot be corrected.



