

Figure 1: Problem 1

Total points $=10$
Question 1 (3 points)

1. Refer to figure ??
2. Refer to figure ??
3. Refer to figure ??
4. - Forwarding table in A determines that the datagram should be routed to interface 111.111.111.002.

- Host A uses ARP to determine the LAN address for 111.111.111.002, namely 22-22-22-22-22.
- The adapter in A creates and Ethernet packet with Ethernet destination address 22-22-22-22-22-22.
- The first router receives the packet and extracts the datagram. The forwarding table in this router indicates that the datagram is to be routed to 122.222.222.003.
- The first router then uses ARP to obtain the associated Ethernet address, namely 55-55-55-55-55-55.
- The process continues until the packet has reached Host F.

5. ARP in A must now determine the LAN address of 111.111.111.002. Host A sends out an ARP query packet within a broadcast Ethernet frame. The first router receives the query packet and sends to Host A an ARP response packet. This ARP response packet is carried by an Ethernet frame with Ethernet destination address 00-00-00-00-00-00.

Question 2 (1 point) Wait for 51,200 bit times. For 10 Mbps , this wait is $\frac{51.2 \times 10^{3} \text { bits }}{10 \times 10^{6} b p s}=5.12 \mathrm{msec}$. For 100 Mbps , the wait is $512 \mu \mathrm{sec}$.

Question 3 (2 points)

Time, t	Event
0	A and B begin transmission
225	A and B detect collision
273	A and B finish transmitting jam signal
$273+225=498$	B 's last bit arrives at A ; A detects an idle channel
$498+96=594$	A starts transmitting
$273+512=785$	B returns to Step2
	B must sense idle channel for 96 bit times before it transmits
$594+225=819$	As transmission reaches B height

Question 4 (2 points)

1. Let Y be a random variable denoting the number of slots until a success: $P(Y=m)=$ $\beta(1-\beta)^{m-1}$, where β is the probability of a success. This is a geometric distribution, which has mean $1 / \beta$. The number of consecutive wasted slots is $X=Y-1$ that

$$
\begin{gather*}
x=E[X]=E[Y]-1=\frac{1-\beta}{\beta} \tag{1}\\
\left.\beta=N p(1-p)^{(} N-1\right) \tag{2}\\
x=\frac{\left.1-N p(1-p)^{(} N-1\right)}{N p(1-p)^{(N-1)}} \tag{3}\\
\text { efficiency }=\frac{k}{k+x}=\frac{k}{k+\frac{1-N p(1-p)(N-1)}{N p(1-p)(N-1)}} \tag{4}
\end{gather*}
$$

2. Maximizing efficiency is equivalent to minimizing x, which is equivalent to maximizing β. We know from the text that β is maximized at $p=1 / N$.
3. As $N \rightarrow \infty$, ef ficiency $=\frac{k}{k+e-1}$
4. As $k \rightarrow \infty$, ef ficiency $=1$

Question 5 (2 points)

1. $\frac{900 \mathrm{~m}}{2 \times 10^{8} \mathrm{~m} / \mathrm{sec}}+4 \times \frac{20 \mathrm{bits}}{10 \times 10^{6} \mathrm{bps}}=\left(4.5 \times 10^{-6}+8 \times 10^{-6}\right) \mathrm{sec}=12.5 \mu \mathrm{sec}$.
2. At time $t=0$, both A and B transmit. At time $t=12.5 \mu \mathrm{sec}$, A detects a collision. At time $t=25 \mu \mathrm{sec}$ last bit of B's aborted transmission arrives at A. At time $t=37.5 \mu \mathrm{sec}$ first bit of A 's retransmission arrives at B. At time $t=37.5 \mu \mathrm{sec}+\frac{1000 \mathrm{bits}}{10 \times 10^{6} \mathrm{bps}}=137.5 \mu \mathrm{sec}$, A 's packet is completely delivered at B.
3. $12.5 \mu \mathrm{sec}+5 \times 100 \mu \mathrm{sec}=512.5 \mu \mathrm{sec}$
