
1

Announcement

• Lectures moved to

• 150 GSPP, public policy building, right opposite
Cory Hall on Hearst.

• Effective Jan 31 i.e. next Tuesday

Socket ProgrammingSocket ProgrammingSocket ProgrammingSocket Programming

Nikhil Shetty

GSI, EECS122

Spring 2006

2

Outline

• APIs – Motivation

• Sockets

• Java Socket classes

• Tips for programming

What is an API?

• API – stands for Application Programming

Interface

3

What is an API?

• API – stands for Application Programming

Interface.

• Interface to what? – In our case, it is an
interface to use the network.

What is an API?

• API – stands for Application Programming

Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

4

What is an API?

• API – stands for Application Programming

Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

• WHY DO WE NEED IT?

Need for API

• One Word - Layering

• Functions at transport layer and below very

complex.

• E.g. Imagine having to worry about errors on

the wireless link and signals to be sent on the

radio.

5

PHYSICAL

LINK

NETWORK

TRANSPORT

API

APPLICATION

Layering Diagramatically

API

Application

System Calls

LAN Card

Radio

6

What is a socket then?

• What is a socket?

Introduction

• What is a socket?

• It is an abstraction that is provided to an

application programmer to send or receive data
to another process.

7

Introduction

• What is a socket?

• It is an abstraction that is provided to an

application programmer to send or receive data
to another process.

• Data can be sent to or received from another

process running on the same machine or a

different machine.

Socket – An Abstraction

Adapted from http://www.troubleshooters.com/codecorn/sockets/

8

Sockets

• It is like an endpoint of a connection

• Exists on either side of connection

• Identified by IP Address and Port number

• E.g. Berkeley Sockets in C

• Released in 1983

• Similar implementations in other languages

Engineers working on Sockets!!!

http://www.fotosearch.com/MDG238/frd1404/

9

Client – Server Architecture

From http://publib.boulder.ibm.com/infocenter/txen/topic/com.ibm.txseries510.doc/atshak0011.htm

Flow in client-server model

• http://www.process.com/tcpip/tcpware57docs/Programmer/fig1-2.gif

10

Java Sockets

• Part of the java.net package

• import java.net.*;

• Provides two classes of sockets for TCP

• Socket – client side of socket

• ServerSocket – server side of socket

• Provides one socket type for UDP

• DatagramSocket

Java TCP Sockets

• ServerSocket performs functions bind and listen

• Bind – fix to a certain port number

• Listen – wait for incoming requests on the port

• Socket performs function connect

• Connect – begin TCP session

11

TCP sockets

• TCP as a byte-stream

• During data packet. transmission, no packetization
and addressing required by application.

• Formatting has to be provided by application.

• Two or more successive data sends on the pipe
connected to socket may be combined together by
TCP in a single packet.

• E.g. Send “Hi” then send “Hello Nikhil” is combined
by TCP to send as “HiHello Nikhil”

UDP sockets

• UDP is packet-oriented

• Info sent in packet format as needed by app.

• Every packet requires address information.

• Lightweight, no connection required.

• Overhead of adding destination address with each
packet.

12

Java Quiz

Q. A constructor is used to...

A. Free memory.

B. Initialize a newly created object.

C. Import packages.

D. Create a JVM for applets.

Java Quiz

Q. A constructor is used to...

A. Free memory.

B. Initialize a newly created object.

C. Import packages.

D. Create a JVM for applets.

13

Socket Class

• Socket

• Socket nameSocket = null;

• nameSocket = new Socket(“hostname", portno);

• ServerSocket

• ServerSocket nameSocket = new
ServerSocket(portno);

• Causes it to listen until there is a connection.

Flow in client-server model

• http://www.process.com/tcpip/tcpware57docs/Programmer/fig1-2.gif

14

Accept

• Socket connectionSocket =

nameSocket.accept();

• Creates a new socket to connect to the client.

• Waits till a new connection request appears.

Read or write from socket

• Associated with classes DataOutputStream and

BufferedReader which create input and output

streams.

• nameSocket.getInputStream() and

nameSocket.getOutputStream() return input

and output streams respectively.

• These streams assigned to local stream

classes and byte stream can be input or output.

15

DatagramSocket Class

• DatagramSocket nameSocket = new

DatagramSocket();

• DatagramPacket sendPacket = new
DatagramPacket(sendData, sendData.length,

IPAddress, portno);

• DatagramPacket recvPacket = new

DatagramPacket(recvData, recvData.length);

• nameSocket.send(sendPacket);

• nameSocket.receive(recvPacket)

Programming Tips

• Good programming techniques

• Enclose all socket creations in try{…} and use
catch() {…} to get the error conditions

• e.g.

try { clientSocket = serverSocket.accept(); }

catch (IOException e)

{ System.out.println("Accept failed: portno");

System.exit(-1); }

• Use tcpdump/Ethereal to see what is being

transmitted on the link.

• Check online guides to Java and Network

Programming.

16

Network Programming Tips (contd)

• How to check if particular port is listening

• Windows – use netstat

• netstat -an

• Linux – use nmap

• nmap -sT -O localhost

• Tip: Use port numbers greater than 1024.

• Tip: InetAddress IPAddress =
InetAddress.getByName(“hostname”);

• Check RFCs if in doubt about protocols.

• http://www.ietf.org/rfc

• Lots of System.out.println(“present_condition”);
• http://java.sun.com/docs/books/tutorial/networking/

