
1

Announcement

• Lectures moved to

• 150 GSPP, public policy building, right opposite
Cory Hall on Hearst.

• Effective Jan 31 i.e. next Tuesday

Socket ProgrammingSocket ProgrammingSocket ProgrammingSocket Programming

Nikhil Shetty

GSI, EECS122

Spring 2006

Outline

• APIs – Motivation

• Sockets

• Java Socket classes

• Tips for programming

What is an API?

• API – stands for Application Programming
Interface

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

2

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

• WHY DO WE NEED IT?

Need for API

• One Word - Layering

• Functions at transport layer and below very

complex.

• E.g. Imagine having to worry about errors on
the wireless link and signals to be sent on the

radio.

PHYSICAL

LINK

NETWORK

TRANSPORT

API

APPLICATION

Layering Diagramatically

API

Application

System Calls

LAN Card

Radio

What is a socket then?

• What is a socket?

Introduction

• What is a socket?

• It is an abstraction that is provided to an

application programmer to send or receive data
to another process.

3

Introduction

• What is a socket?

• It is an abstraction that is provided to an

application programmer to send or receive data
to another process.

• Data can be sent to or received from another

process running on the same machine or a
different machine.

Socket – An Abstraction

Adapted from http://www.troubleshooters.com/codecorn/sockets/

Sockets

• It is like an endpoint of a connection

• Exists on either side of connection

• Identified by IP Address and Port number

• E.g. Berkeley Sockets in C

• Released in 1983

• Similar implementations in other languages

Engineers working on Sockets!!!

http://www.fotosearch.com/MDG238/frd1404/

Client – Server Architecture

From http://publib.boulder.ibm.com/infocenter/txen/topic/com.ibm.txseries510.doc/atshak0011.htm

Flow in client-server model

• http://www.process.com/tcpip/tcpware57docs/Programmer/fig1-2.gif

4

Java Sockets

• Part of the java.net package

• import java.net.*;

• Provides two classes of sockets for TCP

• Socket – client side of socket

• ServerSocket – server side of socket

• Provides one socket type for UDP

• DatagramSocket

Java TCP Sockets

• ServerSocket performs functions bind and listen

• Bind – fix to a certain port number

• Listen – wait for incoming requests on the port

• Socket performs function connect

• Connect – begin TCP session

TCP sockets

• TCP as a byte-stream

• During data packet. transmission, no packetization
and addressing required by application.

• Formatting has to be provided by application.

• Two or more successive data sends on the pipe

connected to socket may be combined together by
TCP in a single packet.

• E.g. Send “Hi” then send “Hello Nikhil” is combined
by TCP to send as “HiHello Nikhil”

UDP sockets

• UDP is packet-oriented

• Info sent in packet format as needed by app.

• Every packet requires address information.

• Lightweight, no connection required.

• Overhead of adding destination address with each
packet.

Java Quiz

Q. A constructor is used to...

A. Free memory.

B. Initialize a newly created object.

C. Import packages.

D. Create a JVM for applets.

Java Quiz

Q. A constructor is used to...

A. Free memory.

B. Initialize a newly created object.

C. Import packages.

D. Create a JVM for applets.

5

Socket Class

• Socket

• Socket nameSocket = null;

• nameSocket = new Socket(“hostname", portno);

• ServerSocket

• ServerSocket nameSocket = new
ServerSocket(portno);

• Causes it to listen until there is a connection.

Flow in client-server model

• http://www.process.com/tcpip/tcpware57docs/Programmer/fig1-2.gif

Accept

• Socket connectionSocket =
nameSocket.accept();

• Creates a new socket to connect to the client.

• Waits till a new connection request appears.

Read or write from socket

• Associated with classes DataOutputStream and
BufferedReader which create input and output

streams.

• nameSocket.getInputStream() and

nameSocket.getOutputStream() return input
and output streams respectively.

• These streams assigned to local stream

classes and byte stream can be input or output.

DatagramSocket Class

• DatagramSocket nameSocket = new
DatagramSocket();

• DatagramPacket sendPacket = new
DatagramPacket(sendData, sendData.length,

IPAddress, portno);

• DatagramPacket recvPacket = new
DatagramPacket(recvData, recvData.length);

• nameSocket.send(sendPacket);

• nameSocket.receive(recvPacket)

Programming Tips

• Good programming techniques

• Enclose all socket creations in try{…} and use
catch() {…} to get the error conditions

• e.g.

try { clientSocket = serverSocket.accept(); }

catch (IOException e)

{ System.out.println("Accept failed: portno");

System.exit(-1); }

• Use tcpdump/Ethereal to see what is being
transmitted on the link.

• Check online guides to Java and Network

Programming.

6

Network Programming Tips (contd)

• How to check if particular port is listening

• Windows – use netstat

• netstat -an

• Linux – use nmap

• nmap -sT -O localhost

• Tip: Use port numbers greater than 1024.

• Tip: InetAddress IPAddress =
InetAddress.getByName(“hostname”);

• Check RFCs if in doubt about protocols.

• http://www.ietf.org/rfc

• Lots of System.out.println(“present_condition”);
• http://java.sun.com/docs/books/tutorial/networking/

