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Review: Check List

� Big Picture
� Layers
� Where protocols are implemented

� Switching Techniques

� Applications
� DNS
� HTTP

� SMTP

� Network Layer: Routing
� Class-Based; Classless Addressing
� Dijkstra; Bellman-Ford
� BGP

� Inside Router
� Architecture: Input, Output
� Scheduling: Fairness, GPS, WFQ

� Distributed Algorithms
� Overlay Networks
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The Network Edge:

� end systems (hosts):

� run application programs

� e.g. Web, email

� at “edge of network”

� client/server model

� client host requests, receives 
service from always-on server

� e.g. Web browser/server; email 
client/server

� peer-peer model:

� minimal (or no) use of dedicated 

servers

� e.g. Gnutella, KaZaA, Skype
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The Network Core

� Many 
interconnected “sub-

networks”

� Many different 
architectures

� Advertises a 

“service” to the end 
devices

� E.g. Phone network 

v/s the Internet
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The internet consists of many networks

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

local
ISP

local
ISP

local
ISP

local
ISP

local
ISP Tier 3

ISP

local
ISP

local
ISP

local
ISP

Many Internet
Service Providers
at each level of the
Hierarchy
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Example: Backbone Network 
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Metropolitan Area Network
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Campus Network

January 17, 2006 EECS122 Lecture 1 (AKP) 9

Local Area Network
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Two fundamentally different ways to 
forward information
� Circuit Switched

� Information is exchanged in units of “calls”

� Network resources are reserved for the duration of the call

� Example: The Phone Network

� Once a call goes through, subsequent calls cannot degrade call 
quality

� Packet Switched

� Information is exchanged in units of “packets”

� Typically, no resources are reserved

� Datagram: Each packet is forward independently

� Example: The Internet

� Virtual Circuit: All the packets from a given stream take the 
same path through the network

� Example: ATM, ISDN, Intserv
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Internet Layering

� Almost Any kind of application 
can write directly on IP
� Including new transport protocols

� IP cannot be avoided
� As long as the routers speak IP, 

any application that can make do 
with datagram service can be 
written and implemented on the 
end devices.
� No co-ordination, standards 

activity etc. is required!!

Network

IP

TCP UDP

Application

BGP HTTP RTP TFTP

TCP UDP

IP

Ethernet FDDI Token Etc.
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Layers



3

January 17, 2006 EECS122 Lecture 1 (AKP) 13

Application Protocols

� Host-Host: 
� HTTP, SMTP

� Host-Network: 
� DNS

� Network-Network: 
� Routing Protocols (e.g. OSPF)

The Core provides
a network service 

to the hosts

Host Host
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DNS Features

� Hierarchical Namespace

� Distributed architecture for storing names 

� Nameservers assigned zones of the 
hierarchical namespace

� Backup servers available for redundancy

� Administration divided along the same 
hierarchy

� DNS client is simple: Resolver

� Client server interaction on UDP Port 53 
(but can use TCP if desired)

root

edu com gov mil org net uk fr

berkeley mit

eecs sims

argus
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How does a name get resolved

� Query “walks” its way up and down the 

hierarchy

� Iterated query

� I don’t know, but here’s who to ask next

� Recursive query

� I don’t know right now, but I’ll get back to you…
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HTTP

HTTP: hypertext transfer 
protocol

� Web’s application layer 

protocol

� client/server model

� client: browser that 

requests, receives, 

“displays” Web objects

� server: Web server sends 

objects in response to 

requests

� HTTP 1.0: Non Persistent

� HTTP 1.1: Persistent

PC running
Explorer

Server 
running

Apache Web
server

Mac running
Navigator

HTTP request

HT
TP
 re

que
st

HTTP response

HT
TP
 re

spo
nse
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Persistent  HTTP

� server leaves connection open after sending 

response

� TCP overhead minimized

� subsequent HTTP messages  between same 

client/server sent over open connection

No pipelining:

� client issues new request only 

when previous response has 
been received

� one RTT for each referenced 

object

Pipelining:

� client sends requests as soon 

as it encounters a referenced 
object

� as little as one RTT for all the 

referenced objects

� default in HTTP/1.1

January 17, 2006 EECS122 Lecture 1 (AKP) 18

Network Layer

� Control Functions: Ensure that routers are 
configured to deliver packets correctly to the 
destination
� Path Selection (called routing in the book)

� Connection Setup: required in virtual circuit 
routing.

� Data Functions: Ensure that arriving packets 
are forwarded correctly within a router with 
minimum delay
� Forwarding
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Interplay between path selection and 
forwarding

1

23

0111

value in arriving

packet’s header

path sel. algorithm

local forwarding table

header value output link

0100
0101
0111
1001

3
2
2
1

path selection algorithms run
as application protocols

forwarding is a function mostly 

Implemented hardware

Routing = Fwding + Path Selection
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� Addressing reflects internet hierarchy 

� 32 bits divided into 2 parts: 

� Class A 

� Class B

� Class C 

Class-base Addressing

network host 0

0

network host 1

160

network 
host 

1

240

~2 million nets

256 hosts

8

0

1 0
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IP addressing: CIDR

CIDR: Classless InterDomain Routing
� net portion of address of arbitrary length: subnet

� address format: a.b.c.d/x, where x is # bits in 
subnet portion of address

11001000  00010111 00010000  00000000

subnet
part

host
part

200.23.16.0/23
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� Example 128.5.10/23

� Common prefix is 23 bits: 01000000 00000101 
0000101

� Number of addresses: 29 = 512 

� Prefix aggregation
� Combine two address ranges

� 128.5.10/24 and 128.5.11/24:

� 01000000 00000101 00001010
01000000 00000101 00001011

gives 128.5.10/23

� Routers match to longest prefix

CIDR: Example
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Link State Protocols

1. Every node learns the topology of the 

network

� Flooding of Link State Packets (LSP)

2. An efficient shortest path algorithm 
computes routes to every other node

3. Node updates Forwarding Table
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Route Computation: Dijkstra

� Every node knows the graph

� All link weights are >= 0

� Goal at node 1: Find the shortest 
paths from 1 to all the other nodes.

� Each node computes the same 
shortest paths so they all agree on 
the routes

� Strategy at node 1: Find the shortest 
paths in order of increasing path 
length

� List the nodes in increasing order of 
(shortest) distance

� S(k): closest k nodes

� Iteration k yields S(k) and a way to 
get there

1

3

4

6

2

5

1

4

1
1

41

2

3

1

S(1)={1}

S(2)={1,2}
S(3)={1,2,5}
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Distance Vector Algorithms

� Nodes communicate distance estimates to their neighbors, 
not topology information

� Based on the Bellman Ford Equation:

Define D(x,y) to the shortest distance from x to y.

D(x,y) = minvεN(x) {c(x,v) + D(v,y)}
where N(x) are the neighbors of node x.

� Why is this true?

Let D(x,v,y) be the shortest path from x to y where the first node 
after x is v. 

Then D(x,v,y) = c(x,v) + D(v,y). 
D(x,y) = minv D(x,v,y)

= minv {c(x,v) + D(v,y) }
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Distance Vector: link cost changes

Link cost changes:

� node detects local link cost change 

� updates routing info, recalculates 

distance vector

� Good news travels fast but Bad 

news can travel very 
slowly….Counting to infinity

x z

14

50

y
1
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BGP

� Pairs of routers (BGP peers) exchange routing info over 
semi-permanent TCP connections: BGP sessions
� BGP sessions need not correspond to physical links.

� When AS2 advertises a prefix to AS1, AS2 is promising it 
will forward any datagrams destined to that prefix towards 
the prefix.
� AS2 can aggregate prefixes in its advertisement

3b

1d

3a

1c
2a

AS3

AS1

AS2
1a

2c

2b

1b

3c

eBGP session

iBGP session
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Router Architecture Overview

Two key router functions:

� run routing algorithms/protocol (RIP, OSPF, BGP)

� forwarding datagrams from incoming to outgoing link

Interconnection
fabric
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The Forwarding Decision Process

� Datagram Routing: Each packet is independently 
forwarded at each router
� Must look up IP address ranges

� Match Longest Prefix

� Virtual Circuit Routing:
� call setup, teardown for each call before data can flow

� each packet carries VC identifier (not destination host 
address)

� every router on source-dest path maintains “state” for each 
passing connection

� link, router resources (bandwidth, buffers) may be allocated 
to VC (dedicated resources = predictable service)
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Output Queued Routers
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Input Queues: Head-of-line Blocking

� The packet at the head of an input queue cannot be 

transferred, thus blocking the following packets  

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

Cannot be 
transferred 

because of 
output 

contention

Cannot be transferred 
because of HOL blocking

Wastes router capacity
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Components of Per Hop Delay

� Propagation delay: time it takes the signal to travel 

from source to destination

� Packet transmission time: time it takes the sender to 

transmit all bits of the packet

� Queuing delay: time the packet need to wait before 
being transmitted because the queue was not empty 

when it arrived

� Processing Time: time it takes a router/switch to 

process the packet header, manage memory, etc

Only random
component
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Delays and Queues

at point 2

A(t): at point 1

Packets
Sender Receiver

1 2

time

12
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Delays and Queues

at point 2

A(t): at point 1

Packets
Sender Receiver

1 2

time

Arrival Rate: α =  A(t)/t,  t→ ∞

12

Q(t): # Packets in the system at t  

Avg Occupancy = Area

Q(s)

s T

Avg Packet Delay: DDt = (D(1)+D(2)+….+D(n))/n

as  n → ∞

Avg # packets in sys: QQ = (Shaded area)/T 

as   T → ∞
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Little’s Law

� Shaded Area up to time T is equal to both

1. D(1)+D(2)+….+D(A(T)) 

2. ∫0
T

Q(t) dt

� Divide and multiple 1 by A(T):

1. [D(1)+D(2)+….+D(A(T)) / A(T)] A(T)

� Divide both (rewritten) 1 and 2 by T and take limits

� Q = D α

average occupancy = (average Delay) X (average arrival rate)
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Flows and Fairness

1.1 
Mb/s

10 
Mb/s

100 
Mb/s

A

B

R1 D

0.2 
Mb/sC

Max-Min Fair Allocation

Want to treat all the flows
as equally as possible.

Give C the full 0.2Mb/s
A and B get 0.45Mb/s each
(0.45,0.45,0.2)
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Mechanisms to Improve Best Effort

� Classification and Scheduling

� Drop Policies

� Call admission

� Policing

� Implementing even a subset of these can help!
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Advanced Queuing Functions
� Packet classification: map each packet to a predefined class

� use to implement more sophisticated services (e.g., QoS)

� Flow: a subset of packets between any two endpoints in the 

network

1

2

Scheduler

class 1

class 2

class n

Classifier

Buffer 
management

FCFS
Priority

Round Robin

WFQ
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Policing Mechanisms

Token Bucket: limit input to specified Burst Size and 

Average Rate. 

� bucket can hold b tokens

� tokens generated at rate r token/sec unless bucket full

� over interval of length t: number of packets admitted less 

than or equal to  (r t + b).
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Performance Guarantees: 
Flows+Policing+Scheduling
� Policing

� Scheduling

WFQ 

token rate, r

bucket size, b

per-flow
rate, R

D     = b/R
max

arriving
traffic
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Modeling Issues

� Error correction

� Assume that errors can “eventually” corrected

� Propagation Delay

� Fixed

� Variable but no more than d

� Variable with no upper bound

� Other components of delay

� Queueing Delay

� Transmission Delay

� Packet order

� FIFO

� Can be delivered in arbitrary order
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Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up, 
its end points send messages to 
all their neighbors who then 
flood.

slow link
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Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood

1. CD fails

DownDown
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Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood.

1. CD fails
• A marks the link down

Down

Down
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Maintaining accurate topology information

D

C

BA

UpUp

Up

Down

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
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Maintaining accurate topology information

D

C

BA

Up

Up

Down

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
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Maintaining accurate topology information

D

C

BA

Up

Up

Down

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
• A marks the link up

3. A marks the link down
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Maintaining accurate topology information

D

C

BA

Up

Up

Up msg lost

Down

Whenever a link goes down/up, 
its end points send 
messages to all their 
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
• A marks the link up

3. A marks the link down
4. CA fails

• Up message lost
A thinks CD is down when it is 

actually up!

This can be fixed with
sequence numbers, but then

other problems emerge…
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Synchronous v/s Asynchronous 
Algorithms

� Synchronous algorithms can be described in terms 
of global iterations. The time taken for a given 

iteration is the time taken for the slowest processor 
to complete that iteration: time driven

� E.g. TDM or SONET

� Asynchronous algorithms execute at a processor 
based on received messages and internal state: 

event driven

� E.g. IP protocols which must run over heterogeneous 

systems

January 17, 2006 EECS122 Lecture 1 (AKP) 50

Implementing a Synchronous Algorithm

� Suppose the slowest process can complete 

an iteration in time Tp

� Link delay is always less than Tl

� Then a slot size of Tp+Tl or more is sufficient

� But most processors may be idle most of the time

� What if Tp and or Tl are not known?
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Local Synchronization
1

3

4

6

2

5

1

4

1
1

4

2

3

1

Send update k after you’ve heard update k-1 from 
all neighbors.

1 32

1 32

idle idle idle

idleidleidle

Node 3

Node 4

1 32 Node 5
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Compare with Synchronous
1

3

4

6

2

5

1

4

1
1

4

2

3

1

Slot size is affected by the slow node 4

1 32

1 32

idle idle idle

idleidleidle

Node 3

Node 4

1 32 Node 5
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Asynchronous computation
1

3

4

6

2

5

1

4

1
1

4

2

3

1

1 2

1 32

idleidleidle

Node 1

Node 6

1 32 Node 5

No notion of “slot size” at all!

Why should this work?

3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Why bother with Asynchronous 
Algorithms

� To reduce the synchronization penalty

� Difficult to get the synchronous algorithm to start

� The network is dynamic

� Flows

� Topology

� Think of the algorithm having to “restart” with a new set of 
initial conditions, every time there is a failure 

� Changes create “events” which may or may not 
have global impact

� Event-driven algorithms better suited 
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Soft State

� State with Time-Out

� Example: A host joins a group by sending a “join” message to a 
“host manager”. The manager adds the host to the group for the 
next T seconds. If the host wants to stay in the group it must 
send a refresh message within T seconds to the manager. 
Otherwise it is dropped. 

� Advantage: Manager robust to host failure

� Disadvantage: Too many messages

� Most internet protocols use this way of communicating

� Trades of simplicity of correctness with complexity of 
communication
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� Two kinds of Overlays
1. Only Hosts: Peer to Peer Networks (P2P)

� Example: Napster, Gnutella, KaZa

2. Only Gateway nodes: Infrastructure Overlays
� Content Distribution Networks (CDNs)

� Example: Akamai

� Overlay node structure
� Regular: CAN

� Adhoc: Gnutella
� Hybrid: KaZa

� Functions
� Route Enhancement: Better QoS, Application Level 

Multicast

� Resource Discovery: P2P

Kinds of Overlay Networks
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Content Addressable P2P Networks 
(CAN)

� CAN is one of several recent P2P architectures that 

� imposes a structure on the virtual topology

� uses a distributed hash-table data structure abstraction

� Note: item can be anything: a data object, document, file, 

pointer to a file…

� routes queries through the structured overlay

� attempts to distribute (object, location) pairs uniformly 
throughout the network 

� supports object lookup, insertion and deletion of objects 
efficiently.

� Others: Chord, Pastry, Tapestry 
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Content Addressable Network (CAN)

� Associate with each node and item, a unique 

id in an d-dimensional space

�Example for d=3: A node might be called (1,11,5)

�Example for d=3: A song might be called (2,3,11)

� Properties 

�Routing table size O(d)

�Guarantee that a file is found in at most d*n1/d

steps, where n is the total number of nodes
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CAN Example: d=2 

� Space divided between 
nodes

� All nodes collectively “cover”
the entire space

� Each node covers either a 
square or a rectangular area 
of ratios 1:2 or 2:1

� Example: 
� Assume space size (8 x 8)
� Node n1:(1, 2) first node that 

joins � cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1
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Covered space divided between nodes

� Node n2:(4, 2) joins � space 
is divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2
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Nodes continue to join

� Node n2:(4, 2) joins � space 
is divided between n1 and n2

� Node n3: (3,5)

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3
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Nodes continue to join

� Nodes n4:(5, 5) and n5:(6,6) 

join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5
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Items are also mapped in the same 
space

� Items: f1:(2,3); f2:(5,1); 
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5

f1

f2

f3

f4
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CAN Example: Two Dimensional 
Space

� Each item is stored by 
the node who owns its 

mapping in the space 

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5

f1

f2

f3

f4
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CAN: Query Example

� Each node knows its 
neighbors in the d-space

� Also knows the d-space 
controlled by its neighbors

� Forward query to the 
neighbor that is closest to the 
query id

� Example: assume n1 queries 
f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5

f1

f2

f3

f4
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Infrastructure Overlays

2

54

3

1

� Overlay network users are 
not directly connected to 
the overlay nodes

� E.g. Akamai



12

January 17, 2006 EECS122 Lecture 1 (AKP) 67

Overlay Routing: Edge Mapping

2

54

3

1

� Overlay network users are not 
directly connected to the 
overlay nodes

� E.g. Akamai

� User must be redirected to a 
“close by” overlay node

� Edge-Mapping, or redirection 
function is hard since
� # potential users enormous
� User clients not under direct 

control

R IP(5)

?
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Overlay Routing: Edge Mapping

2

54

3

1

� Overlay nodes interconnect 
clients

� Enhance nature of connection
� Multicast

� Secure
� Low Loss

� Much easier to add 
functionality than to integrate 
into a router

IP(5)

?
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Overlay Routing: Adding Function to the 
route

2

54

3

1

� Overlay nodes interconnect 
clients

� Enhance nature of connection
� Multicast

� Secure
� Low Loss

� Much easier to add 
functionality than to integrate 
into a router

� Overlay nodes can become 
bottlenecks 
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Overlay Concept: Going Down

3
1

2

12

10

13

11

6

7

8

5

4

Need this link to be very reliable and fast!

January 17, 2006 EECS122 Lecture 1 (AKP) 71

IP Network is the Overlay…

3
1

2

12

10

13

11

6

7

8

5

4

a

b

d

c

IP Routers 3 and 13 attach to a virtual circuit network
e.g. ATM
The IP network “sees” the virtual circuit network as a link
This is called “Link Virtualization” and is commonly deployed


