
1

Network Layer I
EECS 122: Lecture 11

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley

February 21, 2006 EECS122 Lecture 11 (AKP) 2

What is the network layer?

� So far we have been
treating the network “as a
cloud” that “routes packets”

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

2

February 21, 2006 EECS122 Lecture 11 (AKP) 3

What is the network layer?

� So far we have been
treating the network “as a
cloud” that “routes
packets”

� The Network Layer

1. Chops transport layer
messages into IP packets

2. Delivers them to the
correct destination(s)

3. Reconstitutes packets into
transport layer messages

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

February 21, 2006 EECS122 Lecture 11 (AKP) 4

Network layer

� Network layer protocols
must run in every host,
router

� In the internet, they all

understand IP

� Routers do not examine the
transport layer headers of
the packets they forward

� But routers must establish
routes, and so have to run
their own applications e.g.
OSPF, BGP etc.

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

3

February 21, 2006 EECS122 Lecture 11 (AKP) 5

Network Layer Functions

� Control Functions: Ensure that routers are
configured to deliver packets correctly to the
destination
� Path Selection (called routing in the book)

� Connection Setup: required in virtual circuit
routing.

� Data Functions: Ensure that arriving packets
are forwarded correctly within a router with
minimum delay
� Forwarding

February 21, 2006 EECS122 Lecture 11 (AKP) 6

Interplay between path selection and
forwarding

1

23

0111

value in arriving

packet’s header

path sel. algorithm

local forwarding table

header value output link

0100

0101

0111

1001

3

2

2

1

path selection algorithms run
as application protocols

forwarding is a function mostly
Implemented hardware

Routing = Fwding + Path Selection

4

February 21, 2006 EECS122 Lecture 11 (AKP) 7

Network Level Connections

� Important function in some network architectures:

� ATM, frame relay, X.25

� Before data packets flow, two hosts and intervening routers
establish virtual connection

� Routers get involved

� Network and transport layer cnctn service:

� Network: between two hosts

� Transport: between two processes

� Note that connection setup is a control function but it is real-
time. This makes it difficult to implement in the network layer

February 21, 2006 EECS122 Lecture 11 (AKP) 8

Outline of next few lectures

1. Path Selection: Next two lectures

2. Forwarding: One lecture

3. Network Connection Setup (QoS): Two

lectures

5

February 21, 2006 EECS122 Lecture 11 (AKP) 9

A Graph Model

6

7

8

5

4

3
1

2

12

10

13

11

� Nodes are Routers/Hosts

� Edges are links

� Edge (2,6) is the edge
from node 2 to node 6

February 21, 2006 EECS122 Lecture 11 (AKP) 10

Walks

6

7

8

5

4

3
1

2

12

10

13

11

A Walk from 1 to 11

Cycle 4-8-7-5-4

6

February 21, 2006 EECS122 Lecture 11 (AKP) 11

Paths

6

7

8

5

4

3
1

2

12

10

13

11

Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11

February 21, 2006 EECS122 Lecture 11 (AKP) 12

Routes

6

7

8

5

4

3
1

2

12

10

13

11

12

2
3

21

2
8

11

15

12

2

1

2

12

2

7

2

2

Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11

Edges have weights: c(i,j)

Note: It is possible for edge

(i,j) to have a different weight

than edge (j,i).

7

February 21, 2006 EECS122 Lecture 11 (AKP) 13

Routing

6

7

8

5

4

3
1

2

12

10

13

11

12

2
3

21

2
8

11

15

12

2

1

2

12

2

7

2

2

Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11

Edges have weights

Select the shortest path route

Many ways to do this: Path Selection

Algorithms

February 21, 2006 EECS122 Lecture 11 (AKP) 14

Routing Algorithm classification

Global or decentralized

information?

Global:

� all routers have complete

topology, link cost info

� “link state” algorithms

� E.g. OSPF

Decentralized:

� router knows physically-

connected neighbors, link costs

to neighbors

� iterative process of computation,

exchange of info with neighbors

� “distance vector” algorithms

� E.g. RIP

Static or dynamic?

Static:

� routes change slowly over

time

Dynamic:

� routes change more quickly

� periodic update

� in response to link cost

changes

8

February 21, 2006 EECS122 Lecture 11 (AKP) 15

The internet has many Administrative

Domains

6

7

8

5

4

3
1

2

12

10

13

11

February 21, 2006 EECS122 Lecture 11 (AKP) 16

The internet has many Administrative

Domains

A

B

C

3
1

2

12

10

13

11

6

7

8

5

4

9

February 21, 2006 EECS122 Lecture 11 (AKP) 17

Border Routers

6

4

3

2

13

A

B

C

2

4

3

6

13

7

8

5

1
12

10

11

OSPF

RIP

IGRP

BGP

February 21, 2006 EECS122 Lecture 11 (AKP) 18

Hierarchical Routing

A

B

C

6

7

8

5

4

3
1

2

12

10

13

11

6

4

3

2

13

B

2

4

3

6

13

OSPF

RIP

IGRP

BGP

InterDomainInterDomain

IntraDomain

IntraDomain

IntraDomain

10

February 21, 2006 EECS122 Lecture 11 (AKP) 19

Link State Protocols

1. Every node learns the topology of the

network

� Flooding of Link State Packets (LSP)

2. An efficient shortest path algorithm

computes routes to every other node

3. Node updates Forwarding Table

February 21, 2006 EECS122 Lecture 11 (AKP) 20

Flooding

6

7

8

5

4

3
1

2

12

10

13

11

11

February 21, 2006 EECS122 Lecture 11 (AKP) 21

Flooding

6

7

8

5

4

3
1

2

12

10

13

11

February 21, 2006 EECS122 Lecture 11 (AKP) 22

Flooding

6

7

8

5

4

3
1

2

12

10

13

11

12

February 21, 2006 EECS122 Lecture 11 (AKP) 23

Flooding

6

7

8

5

4

3
1

2

12

10

13

11

February 21, 2006 EECS122 Lecture 11 (AKP) 24

Flooding is trickier than it looks…

� Suppose node i is to flood a list of neighbors.

� Rule at each of the nodes: upon receiving the

packet send to all neighbors except the one you

got the packet from…

� FAILS if there are cycles in the graph

� Don’t send the same packet out twice…

� But what if link states change?

� Use sequence numbers…

� Better but not perfect

13

February 21, 2006 EECS122 Lecture 11 (AKP) 25

Some Issues

� What happens if sequence numbers wrap?

� Hardware errors could cause arbitrary behavior

� What happens when a partitioned network is

reconstituted?

� What about security?

� Etc., etc.

� Many lines of code

February 21, 2006 EECS122 Lecture 11 (AKP) 26

Learning the topology

� Every router sends Link State Packets (LSPs) to all of its neighbors

� LSPs arrive and wait in buffers to be “accepted”

� If node j receives a LSP from node k it compares the sequence
numbers. If this is the most recent one from k, send to N(j)-{k}.
� This way each router can send its LSP to all other routers

� Age starts out at 7. At any router, value is decremented every 8
seconds. At 0 discard.

� As long as sequence don’t wrap this works
� Otherwise things can get ugly

Source

Sequence Number

Age

List of Neighbors

14

February 21, 2006 EECS122 Lecture 11 (AKP) 27

Route Computation: Dijkstra

� Every node knows the graph

� All link weights are >= 0

� Goal at node 1: Find the shortest
paths from 1 to all the other nodes.

� Each node computes the same
shortest paths so they all agree on
the routes

� Strategy at node 1: Find the shortest
paths in order of increasing path
length

� List the nodes in increasing order of
(shortest) distance

� S(k): closest k nodes

� Iteration k yields S(k) and a way to
get there

1

3

4

6

2

5

1

4

1
1

41

2

3

1

S(1)={1}

S(2)={1,2}

S(3)={1,2,5}

February 21, 2006 EECS122 Lecture 11 (AKP) 28

Dijkstra: Shortest Path

1

3

4

6

2

5

1

4

1
1

41

2

3

1

D(1,5)=2

Notation

c(i,j) >=0 :cost of link from (I,j)

D(1,i): Shortest path from 1 to i.

S(k) : the set of nodes k-closest to 1

� IDEA: Given S(k) we can find S(k+1)
efficiently:

� To get S(k+1), observe that

1. This node cannot be in P(k)

2. It must be one hop away from some node

in P(k)

� Suppose 2 were false. We picked i

� Node i has no edge into S(k)

� There must be a node x, not in P(k) such
that

x is one hop away from S(k) and

D(1,i)=D(1,x)+D(x,i)

� But then, D(1,x) < D(1,i) and we would
have picked x instead.

� Pick node(s) that is one hop away from
P(k) that is closest to 1.

� Keep iterating until all nodes are in P

15

February 21, 2006 EECS122 Lecture 11 (AKP) 29

Dijkstra: Shortest Path

1

3

6

2

51

1 4

4 2

S(2)={1,2}

D(1,2)=1

1

3

4

6

2

51

1

3 2

3

6

S(3)={1,2,5}

D(1,5)=2

1

3

4

6

2

51

1

3 2

3

5

S(4)={1,2,3,5,6}

D(1,3)=3

D(1,6)=3

1

3

4

6

2

5

1

4

1
1

4
1

2

1

3

February 21, 2006 EECS122 Lecture 11 (AKP) 30

Dijkstra: Forwarding Table

1

3

4

6

2

5

1

4

1
1

41

2

3

1

166

334

133

122

221

CostOutgoing

At node 5

16

February 21, 2006 EECS122 Lecture 11 (AKP) 31

Dijkstra’s algorithm: Complexity

Algorithm complexity: n nodes

� each iteration: need to check all nodes, w, not in S()

� n(n+1)/2 comparisons: O(n2)

� more efficient implementations possible: O(nlogn)

� Much better complexity for a sparse graph

February 21, 2006 EECS122 Lecture 11 (AKP) 32

Distance Vector Algorithms

� Nodes communicate distance estimates to their neighbors,
not topology information

� Based on the Bellman Ford Equation:

Define D(x,y) to the shortest distance from x to y.

D(x,y) = minvεN(x) {c(x,v) + D(v,y)}
where N(x) are the neighbors of node x.

� Why is this true?
Let D(x,v,y) be the shortest path from x to y where the first node
after x is v.

Then D(x,v,y) = c(x,v) + D(v,y).
D(x,y) = minv D(x,v,y)

= minv {c(x,v) + D(v,y) }

17

February 21, 2006 EECS122 Lecture 11 (AKP) 33

Distance Vector Protocols

� Communicate current distance
estimates of node to every other
node
� This is called its distance vector:

Di = (D(i,1),D(i,2),…,D(i,n))

� Initially, assume that all distance
estimates are c(i,j)

� The nodes do not need to learn
the entire topology
� Just use the distance estimates

(vectors) of their neighbors

� The Bellman Ford equation helps
refine estimates over time

� Periodically each node sends its
distance vector to all of its
neighbors

1

3

4

6

2

5

1

4

1
1

41

2

3

1

At node 1:

D1: (0,1,∞,∞, ∞,4)

Neighbor estimates

2: (1,0,∞,∞,∞,∞)

6: (4,∞,∞,∞,∞,0)

At node 6:

D6: (4,∞,∞,∞,1,0)

Neighbor estimates

1: (0,∞,∞,∞,∞,4)

5: (∞,∞,∞,∞,0,1)

No communication yet

February 21, 2006 EECS122 Lecture 11 (AKP) 34

Distance Vector Protocols

� Upon receiving a more
recent distance vector from
its neighbors, a node, i,
stores it and revises Di:

� New D(i,d):
� The total cost to send it via

neighbor j is the sum of

� The link cost c(i,j)

� The stored estimate to reach
d from j

� Pick the lowest sum over all
the neighbors

� D(i,d) = minjεN(i) {c(i,j) + D(j,d)}

1

3

4

6

2

5

1

4

1
1

41

2

3

1

Old Info:

DV: (4,∞,∞,∞,1,0)

Neighbor estimates:

1: (0, ∞,∞,∞,∞,4)

5: (∞,∞,∞,∞,0,1)

Revised:
DV: (4,2,2,5,1,0)
Neighbor estimates:

1: (0,1, ∞,∞, ∞,4)

5: (∞,1,1,4,0,1)

Node 6 receives

(0,1,∞, ∞,∞,∞,4) from 1
(∞,1,1,4,0,1) from 5

Send all packets to 2 via 1.

Focus on node 6

18

February 21, 2006 EECS122 Lecture 11 (AKP) 35

Distance Vector Protocols

� Forwarding Table at 6

1

3

4

6

2

5

1

4

1
1

41

2

3

1

Estimates

DV: (3,2,2,4,1,0)
Neighbor estimates:
1: (0,1,3,5,2,3)
5: (2,1,1,3,0,1)

155

454

253

252

351

CostNode

February 21, 2006 EECS122 Lecture 11 (AKP) 36

Why does this compute shortest paths?

� Suppose in every tick each node sends its distance vector.

� Assume that initial distances are ∞

� At time h, node i has as an estimate of the shortest path to node j that has <= h+1
hops!

� Dh+1(i,j) = minkεN(i) {Dh(k) + c(i,k)}

1

3

4

6

2

5

1

3 2

3

51

3

6

2

5

1

4 2

4

1

6

2

1

4

1

3

4

6

2

5

1

4

1
1

4
1

2

3

1

1

3

4

6

2

5

1

3 2

3

6

Distances to node 1

19

February 21, 2006 EECS122 Lecture 11 (AKP) 37

Asynchronous Bellman Ford

� In general, nodes are using different and

possibly inconsistent estimates

� If no link changes after some time t, the

algorithm will eventually converge to the

shortest path

� No synchronization required at all…

February 21, 2006 EECS122 Lecture 11 (AKP) 38

Distance Vector: link cost changes

Link cost changes:

� node detects local link cost change

� updates routing info, recalculates
distance vector

� if DV changes, notify neighbors

“good
news
travels
fast”

x z

14

50

y
1

At time t0, y detects the link-cost change, updates its DV,
and informs its neighbors.

At time t1, z receives the update from y and updates its table.
It computes a new least cost to x and sends its neighbors its DV.

At time t2, y receives z’s update and updates its distance table.
y’s least costs do not change and hence y does not send any
message to z.

20

February 21, 2006 EECS122 Lecture 11 (AKP) 39

Bad News Travels Slowly…

4 3

2

1

1

11

M

1

D(2,1)=2, D(3,1)=1, D(4,1)=2

February 21, 2006 EECS122 Lecture 11 (AKP) 40

Bad News Travels Slowly…

4 3

2

1

1

11

M

1
Node 2 takes about M
Iterations to figure out that
D(2,1)=M

•Tricks exist to get around these problems but not fool proof

21

February 21, 2006 EECS122 Lecture 11 (AKP) 41

Counting to Infinity

A B C

012

A B C

034

A B C

056

Ping-Pong to Eternity

All links cost 1

February 21, 2006 EECS122 Lecture 11 (AKP) 42

Oscillations

� Link costs must reflect link speed AND congestion

� Under both LSP and DV routing occurs over a tree

� The costs of the links of this tree will increase

� The other links will not be congested

� Their costs will drop

� Routing protocol will shift traffic and create a new

tree

� This process of shifting and reshifting can be severe

� Way out: Change congestion costs slowly

(exponential averaging) – Route dampening

22

February 21, 2006 EECS122 Lecture 11 (AKP) 43

Comparison of LS and DV algorithms

Message complexity

� LS: with n nodes, E links, O(nE)

msgs sent

� DV: exchange between neighbors

only

� convergence time varies

Speed of Convergence

� LS: O(n2) algorithm requires

O(nE) msgs

� may have oscillations

� DV: convergence time varies

� may be routing loops

� count-to-infinity problem

Robustness: what happens if

router malfunctions?

LS:

� node can advertise incorrect

link cost

� each node computes only its

own table

DV:

� DV node can advertise

incorrect path cost

� each node’s table used by

others

� error propagate thru network

February 21, 2006 EECS122 Lecture 11 (AKP) 44

Link State vs. Distance Vector

No clear winner
� LS is robust since it each node computes its own routes

independently

� Suffers from the weaknesses of the topology update protocol.

Inconsistency etc.

� Excellent choice for a well engineered network within one

administrative domain

� E. g. OSPF

� DV works well when the network is large since it requires no

synchronization and has a trivial topology update algorithm

� Suffers from convergence delays

� Very simple to implement at each node

� Excellent choice for large networks

� E.g. RIP

