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What is the network layer?

� So far we have been 
treating the network “as a 
cloud” that “routes packets”
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What is the network layer?

� So far we have been 
treating the network “as a 
cloud” that “routes 
packets”

� The Network Layer

1. Chops transport layer 
messages into IP packets

2. Delivers them to the 
correct destination(s)

3. Reconstitutes packets into 
transport layer messages
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Network layer

� Network layer protocols 
must run in every host, 
router

� In the internet, they all 

understand IP

� Routers do not examine the 
transport layer headers of 
the packets they forward

� But routers must establish 
routes, and so have to run 
their own applications e.g. 
OSPF, BGP etc.
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Network Layer Functions

� Control Functions: Ensure that routers are 
configured to deliver packets correctly to the 
destination
� Path Selection (called routing in the book)

� Connection Setup: required in virtual circuit 
routing.

� Data Functions: Ensure that arriving packets 
are forwarded correctly within a router with 
minimum delay
� Forwarding
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Interplay between path selection and 
forwarding
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path selection algorithms run
as application protocols

forwarding is a function mostly 
Implemented hardware

Routing = Fwding + Path Selection
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Network Level Connections

� Important function in some network architectures:

� ATM, frame relay, X.25

� Before data packets flow, two hosts and intervening routers 
establish virtual connection

� Routers get involved

� Network and transport layer cnctn service:

� Network: between two hosts

� Transport: between two processes

� Note that connection setup is a control function but it is real-
time. This makes it difficult to implement in the network layer
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Outline of next few lectures

1. Path Selection: Next two lectures

2. Forwarding: One lecture

3. Network Connection Setup (QoS): Two 

lectures
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A Graph Model
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� Nodes are Routers/Hosts

� Edges are links

� Edge (2,6) is the edge
from node 2 to node 6
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Walks
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A Walk from 1 to 11

Cycle 4-8-7-5-4
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Paths
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Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11
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Routes
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Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11

Edges have weights: c(i,j)

Note: It is possible for edge

(i,j) to have a different weight

than edge (j,i). 
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Routing

6

7

8

5

4

3
1

2

12

10

13

11

12

2
3

21

2
8

11

15

12

2

1

2

12

2

7

2

2

Routes are PathsA Path is a Walk

with no cycles

There are 24 paths from
1 to 11

Edges have weights

Select the shortest path route

Many ways to do this: Path Selection 

Algorithms
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Routing Algorithm classification

Global or decentralized 

information?

Global:

� all routers have complete 

topology, link cost info

� “link state” algorithms

� E.g. OSPF

Decentralized:

� router knows physically-

connected neighbors, link costs 

to neighbors

� iterative process of computation, 

exchange of info with neighbors

� “distance vector” algorithms

� E.g. RIP

Static or dynamic?

Static:

� routes change slowly over 

time

Dynamic:

� routes change more quickly

� periodic update

� in response to link cost 

changes
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The internet has many Administrative 

Domains
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The internet has many Administrative 

Domains
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Border Routers
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Hierarchical Routing
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Link State Protocols

1. Every node learns the topology of the 

network

� Flooding of Link State Packets (LSP)

2. An efficient shortest path algorithm 

computes routes to every other node

3. Node updates Forwarding Table
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Flooding
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Flooding
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Flooding
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Flooding
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Flooding is trickier than it looks…

� Suppose node i is to flood a list of neighbors.

� Rule at each of the nodes: upon receiving the 

packet send to all neighbors except the one you 

got the packet from…

� FAILS if there are cycles in the graph

� Don’t send the same packet out twice…

� But what if link states change? 

� Use sequence numbers…

� Better but not perfect
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Some Issues

� What happens if sequence numbers wrap?

� Hardware errors could cause arbitrary behavior

� What happens when a partitioned network is 

reconstituted?

� What about security?

� Etc., etc.

� Many lines of code
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Learning the topology

� Every router sends Link State Packets (LSPs) to all of its neighbors

� LSPs arrive and wait in buffers to be “accepted”

� If node j receives a LSP from node k it compares the sequence 
numbers. If this is the most recent one from k, send to N(j)-{k}.
� This way each router can send its LSP to all other routers

� Age starts out at 7. At any router, value is decremented every 8
seconds. At 0 discard.

� As long as sequence don’t wrap this works
� Otherwise things can get ugly

Source

Sequence Number

Age

List of Neighbors
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Route Computation: Dijkstra

� Every node knows the graph

� All link weights are >= 0

� Goal at node 1: Find the shortest 
paths from 1 to all the other nodes.

� Each node computes the same 
shortest paths so they all agree on 
the routes

� Strategy at node 1: Find the shortest 
paths in order of increasing path 
length

� List the nodes in increasing order of 
(shortest) distance

� S(k): closest k nodes

� Iteration k yields S(k) and a way to 
get there
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S(1)={1}

S(2)={1,2}

S(3)={1,2,5}
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Dijkstra: Shortest Path
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D(1,5)=2

Notation

c(i,j) >=0  :cost of link from (I,j)

D(1,i): Shortest path from 1 to i.

S(k) : the set of nodes k-closest to 1

� IDEA: Given S(k) we can find S(k+1) 
efficiently:

� To get S(k+1), observe that

1. This node cannot be in P(k)

2. It must be one hop away from some node 

in P(k)

� Suppose 2 were false. We picked i

� Node i has no edge into S(k)

� There must be a node x, not in P(k) such 
that

x is one hop away from S(k) and

D(1,i)=D(1,x)+D(x,i)

� But then, D(1,x) < D(1,i) and we would 
have picked x instead. 

� Pick node(s) that is one hop away from 
P(k) that is closest to 1.

� Keep iterating until all nodes are in P
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Dijkstra: Shortest Path
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Dijkstra: Forwarding Table
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Dijkstra’s algorithm: Complexity

Algorithm complexity: n nodes

� each iteration: need to check all nodes, w, not in S()

� n(n+1)/2 comparisons: O(n2)

� more efficient implementations possible: O(nlogn)

� Much better complexity for a sparse graph
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Distance Vector Algorithms

� Nodes communicate distance estimates to their neighbors, 
not topology information

� Based on the Bellman Ford Equation:

Define D(x,y) to the shortest distance from x to y.

D(x,y) = minvεN(x) {c(x,v) + D(v,y)}
where N(x) are the neighbors of node x.

� Why is this true?
Let D(x,v,y) be the shortest path from x to y where the first node 
after x is v. 

Then D(x,v,y) = c(x,v) + D(v,y). 
D(x,y) = minv D(x,v,y)

= minv {c(x,v) + D(v,y) }
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Distance Vector Protocols

� Communicate current distance 
estimates of node to every other 
node 
� This is called its distance vector: 

Di = (D(i,1),D(i,2),…,D(i,n))

� Initially, assume that all distance 
estimates are c(i,j)

� The nodes do not need to learn 
the entire topology
� Just use the distance estimates 

(vectors)  of  their neighbors

� The Bellman Ford equation helps 
refine estimates over time

� Periodically each node sends its 
distance vector to all of its 
neighbors
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At node 1:

D1: (0,1,∞,∞, ∞,4)

Neighbor estimates

2: (1,0,∞,∞,∞,∞)

6: (4,∞,∞,∞,∞,0)

At node 6:

D6: (4,∞,∞,∞,1,0)

Neighbor estimates

1: (0,∞,∞,∞,∞,4)

5: (∞,∞,∞,∞,0,1)

No communication yet

February 21, 2006 EECS122 Lecture 11 (AKP) 34

Distance Vector Protocols

� Upon receiving a more 
recent distance vector from 
its neighbors, a node, i, 
stores it and revises Di:

� New D(i,d):
� The total cost to send it via 

neighbor j is the sum of

� The link cost c(i,j)

� The stored estimate to reach 
d from j

� Pick the lowest sum over all 
the neighbors

� D(i,d) = minjεN(i) {c(i,j) + D(j,d)}
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Old Info:

DV: (4,∞,∞,∞,1,0)

Neighbor estimates:

1: (0, ∞,∞,∞,∞,4)

5: (∞,∞,∞,∞,0,1)

Revised:
DV: (4,2,2,5,1,0)
Neighbor estimates:

1: (0,1, ∞,∞, ∞,4)

5: (∞,1,1,4,0,1)

Node 6 receives

(0,1,∞, ∞,∞,∞,4) from 1
(∞,1,1,4,0,1) from 5

Send all packets to 2 via 1.

Focus on node 6
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Distance Vector Protocols

� Forwarding Table at 6
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Why does this compute shortest paths?

� Suppose in every tick each node sends its distance vector. 

� Assume that initial distances are ∞

� At time h, node i has as an estimate of the shortest path to node j that has <= h+1 
hops!

� Dh+1(i,j) = minkεN(i) {Dh(k) + c(i,k)}
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Asynchronous Bellman Ford 

� In general, nodes are using different and 

possibly inconsistent estimates

� If no link changes after some time t, the 

algorithm will eventually converge to the 

shortest path

� No synchronization required at all…
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Distance Vector: link cost changes

Link cost changes:

� node detects local link cost change 

� updates routing info, recalculates 
distance vector

� if DV changes, notify neighbors 

“good
news 
travels
fast”

x z

14

50

y
1

At time t0, y detects the link-cost change, updates its DV, 
and informs its neighbors.

At time t1, z receives the update from y and updates its table. 
It computes a new least cost to x and sends its neighbors its DV.

At time t2, y receives z’s update and updates its distance table. 
y’s least costs do not change and hence y does not send any 
message to z. 
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Bad News Travels Slowly…
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D(2,1)=2, D(3,1)=1, D(4,1)=2
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Bad News Travels Slowly…
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Node 2 takes about M 
Iterations to figure out that
D(2,1)=M

•Tricks exist to get around these problems but not fool proof
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Counting to Infinity

A B C

012

A B C

034

A B C

056

Ping-Pong to Eternity

All links cost 1
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Oscillations

� Link costs must reflect link speed AND congestion

� Under both LSP and DV routing occurs over a tree

� The costs of the links of this tree will increase

� The other links will not be congested

� Their costs will drop

� Routing protocol will shift traffic and create a new 

tree

� This process of shifting and reshifting can be severe

� Way out: Change congestion costs slowly 

(exponential averaging) – Route dampening
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Comparison of LS and DV algorithms

Message complexity

� LS: with n nodes, E links, O(nE) 

msgs sent  

� DV: exchange between neighbors 

only

� convergence time varies

Speed of Convergence

� LS: O(n2) algorithm requires 

O(nE) msgs

� may have oscillations

� DV: convergence time varies

� may be routing loops

� count-to-infinity problem

Robustness: what happens if 

router malfunctions?

LS:

� node can advertise incorrect 

link cost

� each node computes only its 

own table

DV:

� DV node can advertise 

incorrect path cost

� each node’s table used by 

others 

� error propagate thru network
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Link State vs. Distance Vector

No clear winner
� LS is robust since it each node computes its own routes 

independently

� Suffers from the weaknesses of the topology update protocol. 

Inconsistency etc.

� Excellent choice for a well engineered network within one 

administrative domain

� E. g. OSPF

� DV works well when the network is large since it requires no 

synchronization and has a trivial topology update algorithm

� Suffers from convergence delays

� Very simple to implement at each node

� Excellent choice for large networks

� E.g. RIP


