Network Layer Enhancements

EECS 122: Lecture 14

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley

Today

- We have studied the network layer mechanisms that enable "best effort service"
- Today's focus: How to make best effort better!
 - How are virtual circuits established?
 - Why do they help in improving performance?
 - What does it mean to treat the packets of a network "fairly"
 - Max Min Fairness
 - What network layer mechanisms improve performance?
 - Scheduling
 - Policing

March 2, 2006

EECS122 Lecture 14 (AKP)

Network Service Models

Q: What service model for "channel" transporting datagrams from sender to rcvr?

Example services for individual datagrams:

- Guaranteed delivery
- Guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:

- In-order datagram delivery
- Guaranteed minimum bandwidth to flow
- Jitter Control: Restrictions on changes in inter-packet spacing

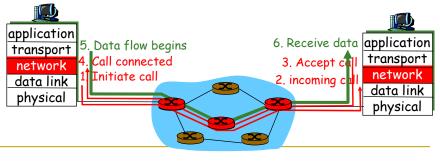
Need Virtual Circuits to Provide Flow-Based Services

March 2, 2006

EECS122 Lecture 14 (AKP)

3

Network layer service models:


	Network Architecture	Service Model	Guarantees ?				Congestion
/			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

March 2, 2006

EECS122 Lecture 14 (AKP)

Virtual circuits: signaling protocols

- used to setup, maintain teardown VC
- used in ATM, frame-relay, X.25
- not used in today's Internet

March 2, 2006

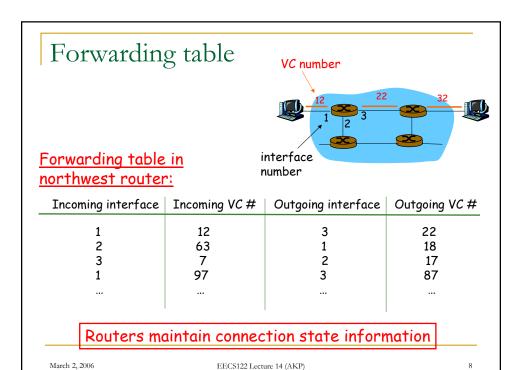
EECS122 Lecture 14 (AKP)

Virtual circuits

- Signaling: call setup, teardown for each call before data can flow
- Addressing: each packet carries VC identifier (not destination host address)
- Router State: every router on source-dest path maintains "state" for each passing connection
- Resource Allocation: link, router resources (bandwidth, buffers) may be allocated to VC

March 2, 2006

EECS122 Lecture 14 (AKP)


VC implementation

A VC consists of:

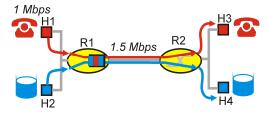
- Path from source to destination
- 2. VC numbers, one number for each link along path
- 3. Entries in forwarding tables in routers along path
- Packet belonging to VC carries a VC number.
- VC number must be changed on each link.
 - New VC number comes from forwarding table
 - This is <u>label switching!</u>

March 2, 2006

EECS122 Lecture 14 (AKP)

Allocating Resources

- Circuit switched networks allocate resources by allocating timeslots during which no other flow can use the link
- Virtual Circuit networks use
 - Scheduling
 - Policing
 - Drop Policies
 - Call Admission
- What are these things?
 - Let's look at a simple motivating example


March 2, 2006

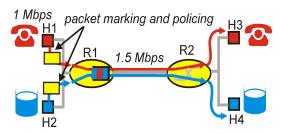
EECS122 Lecture 14 (AKP)

9

Example

- 0.5Mbps IP phone, FTP share 1.5 Mbps link.
 - bursts of FTP can congest router, cause audio loss
 - This is because the link at R1 is using First Come First Serve

Classification and Scheduling -


packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

March 2, 2006

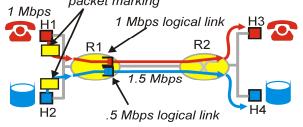
EECS122 Lecture 14 (AKP)

Example

- what if applications misbehave (audio sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- marking and policing at network edge:

- Policing -

provide protection (isolation) for one class from others


March 2, 2006

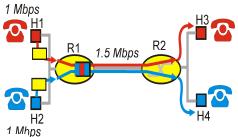
EECS122 Lecture 14 (AKP)

11

Example

 Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn't use its allocation packet marking

Efficiency


While providing isolation, it is desirable to use resources as efficiently as possible

March 2, 2006

EECS122 Lecture 14 (AKP)

Example

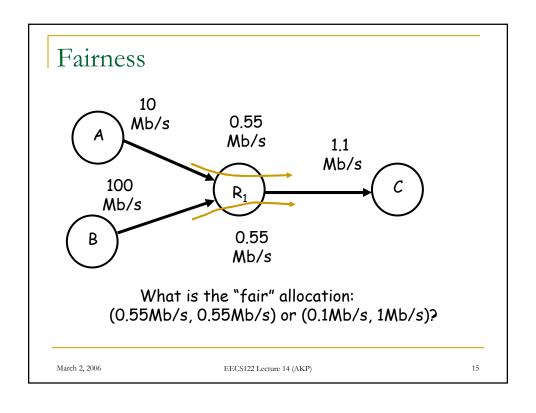
 Basic fact of life: can not support traffic demands beyond link capacity

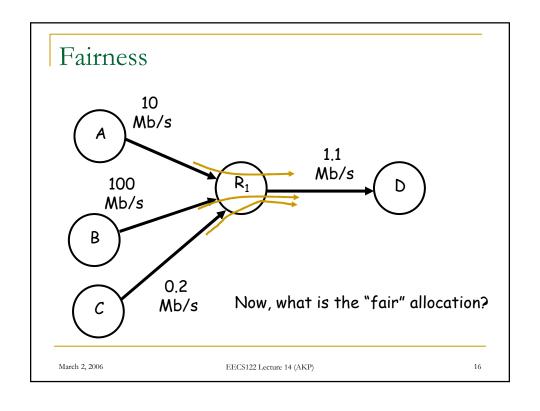
Call Admission

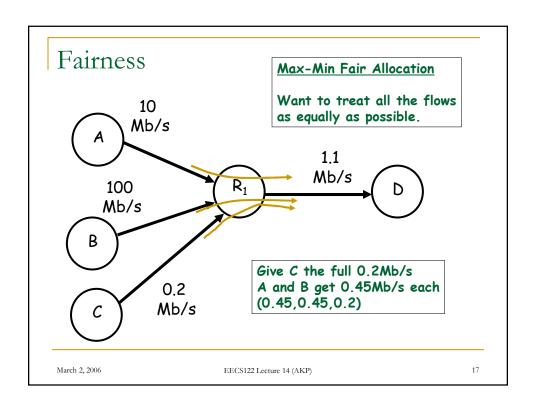
flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

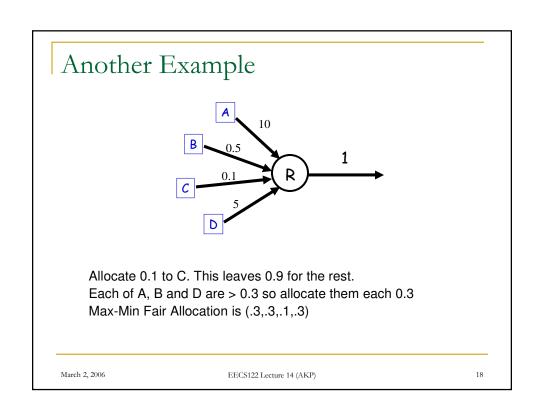
March 2, 2006

EECS122 Lecture 14 (AKP)


13


Mechanisms to Improve Best Effort

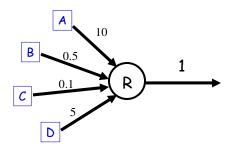

- Classification and Scheduling
- Drop Policies
- Policing
- Call admission
- Implementing even a subset of these can help!
- Next Question....
 - How should we use these mechanisms to improve performance?


March 2, 2006

EECS122 Lecture 14 (AKP)

Max-Min Fairness Algorithm

N flows share a link of rate *C*. Flow *f* wishes to send at rate W(f), and is allocated rate R(f).


- 1. Pick the flow, *f*, with the smallest desired rate.
- 2. If W(f) < C/N, then set R(f) = W(f).
- 3. If W(f) > C/N, then set R(f) = C/N.
- 4. Set N = N 1. C = C R(f).
- 5. If N > 0 goto 1.

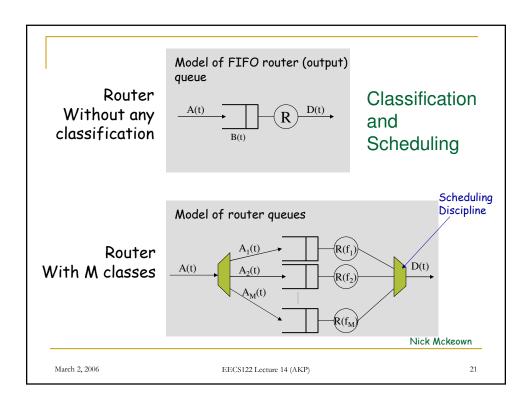
March 2, 2006

EECS122 Lecture 14 (AKP)

19

Example Revisted

Round 1: Set $R(f_C) = 0.1$


Round 2: Set $R(f_B) = 0.9/3 = 0.3$

Round 3: Set $R(f_D) = 0.6/2 = 0.3$

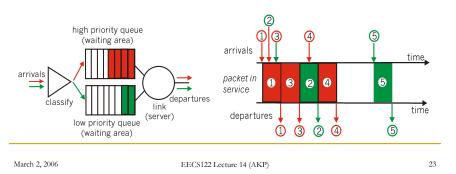
Round 4: Set $R(f_A) = 0.3/1 = 0.3$

March 2, 2006

EECS122 Lecture 14 (AKP)

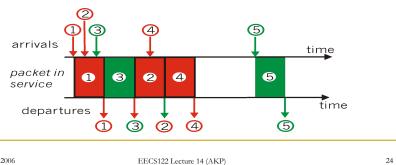
Scheduling Goals

- Flexibility
 - Must be able to accommodate a wide range of performance objectives
 - Must be "fair"
- Predictable/Analyzable
 - Must have some way to determine if the performance objectives are met
- Implementable
 - Cost
 - Performance


March 2, 2006

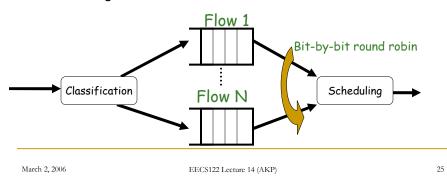
EECS122 Lecture 14 (AKP)

Priority Scheduling

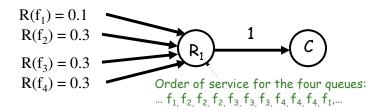

Transmit highest priority queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc..
 - Problem: Higher priorities can hog

Round Robin


- multiple classes
- cyclically scan class queues, serving one from each class (if available)
- Problems:
 - What if the flows require different rates?
 - What if the packet sizes are not equal?

March 2, 2006 EECS122 Lecture 14 (AKP)


Fair Queueing

- This treats all the flows equally but allows for unequal packet sizes
- 1. Flows are scheduled one bit at a time, in a round-robin fashion.
- This is called Bit-by-Bit Fair Queueing or Processor Sharing

Weighted Bit-by-Bit Fair Queueing

Likewise, flows can be allocated different rates by servicing a different number of bits for each flow during each round.

Also called "Generalized Processor Sharing (GPS)"

March 2, 2006 EECS122 Lecture 14 (AKP) 26

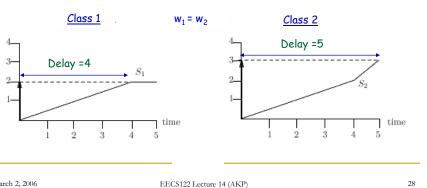
Packetized Weighted Fair Queueing

Problem: We need to serve a whole packet at a time.

Solution:

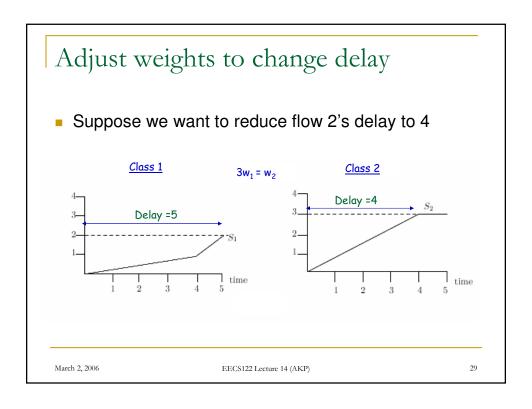
- Determine what time a packet, p, would complete if we served flows bitby-bit. Call this the packet's finishing time, F_p .
- Serve packets in the order of increasing finishing time.

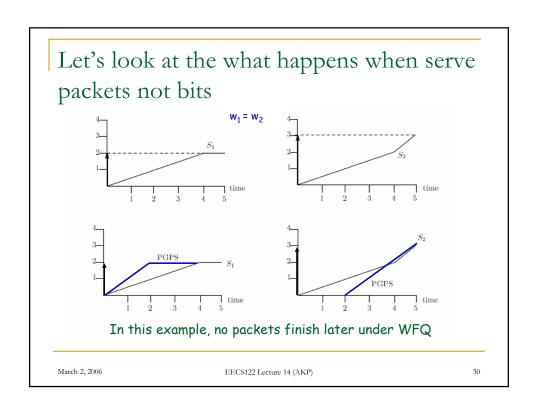
Theorem: Packet p will depart before F_p + (max packet transmission delay)


Also called "Packetized Generalized Processor Sharing (PGPS)"

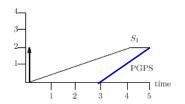
March 2, 2006

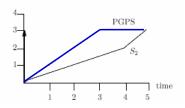
EECS122 Lecture 14 (AKP)


Generalized Processor sharing can be used to control the delay at a router


- Example: Two Flows share a link of 1Mbs
 - Both flows have large chunks to send
 - Case 1: Treat them equally

March 2, 2006


EECS122 Lecture 14 (AKP)



WFQ Example II

- Packets out of order
 - Packet from Flow 1 finishes late under WFQ
 - $\hfill\Box$ Theorem: Maximum lateness is L_{max}/C where L_{max} is the maximum packet size allowed. WFQ never falls further behind.

March 2, 2006

EECS122 Lecture 14 (AKP)

31

The use of WFQ for (weighted) fairness

- WFQ can be used to provide different rates to different flows.
- Most routers today implement WFQ and can be used to give different rates to different flows. (Not used much yet).
- Different definitions of a flow are possible:
 Application flow, all packets to a destination, all packets from a source, all http packets, the CEO's traffic, ... etc.

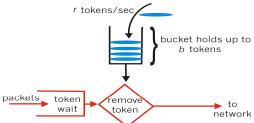
March 2, 2006

EECS122 Lecture 14 (AKP)

Policing Mechanisms

Goal: limit traffic to not exceed declared parameters Three common-used criteria:

- (Long term) Average Rate: how many pkts can be sent per unit time (in the long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 1500 ppm peak rate
- (Max.) Burst Size: max. number of pkts sent consecutively (with no intervening idle)

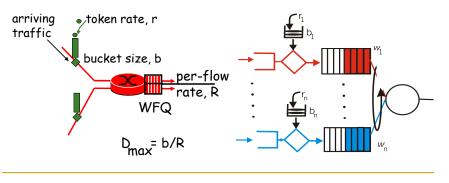

March 2, 2006

EECS122 Lecture 14 (AKP)

33

Policing Mechanisms

<u>Token Bucket:</u> limit input to specified Burst Size and Average Rate.


- bucket can hold b tokens
- tokens generated at rate r token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to (r t + b).

March 2, 2006

EECS122 Lecture 14 (AKP)

Policing Mechanisms (more)

token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!

March 2, 2006

EECS122 Lecture 14 (AKP)

Summary

- Best Effort can be improved significantly through the addition of network layer flows
- Virtual circuits implement flows
- Even in the absence of flows, router mechanisms such as scheduling and intelligent drop policies can improve performance significantly
- Next time: Quality of Service in the internet

March 2, 2006

EECS122 Lecture 14 (AKP)

36