
1

Distributed Algorithms in

Networks
EECS 122: Lecture 17

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley

March 21, 2006 AKP: EECS122 Lecture 17 2

The Internet is a HUGE Distributed

System

� Nodes are local processors

� Messages are exchanged over various kinds of links

� Nodes contain sensors which sense local changes

� Nodes control the network jointly
� Method for doing this is a distributed algorithm

� Example: Routing

� Time taken to solve the problem has two
components:
� Computation time taken for local processing

� Communication time for messages to be received over the
links

2

March 21, 2006 AKP: EECS122 Lecture 17 3

Solving Global Problems in a Distributed

Setting

� Examples:

� Minimum Spanning Tree

� Shortest Path

� Leader Election

� Topology Broadcast

� Much easier to think in terms of centralized

algorithms

� Creativity needed to convert to the distributed

case

March 21, 2006 AKP: EECS122 Lecture 17 4

Network Protocols often have unintended

effects
� TCP

� Example 1

� TCP connections detect congestion after it has happened

� May cause packet drops from uncongested “well behaved flows”

� Non congested flows back off

� Example 2

� Two TCP flows sharing the same router get uneven bandwidths

because one has a much smaller RTT than the other

� Routing

� Oscillation and countless other pathologies

� It is very difficult to avoid these unintended effects

3

March 21, 2006 AKP: EECS122 Lecture 17 5

Today

� Focus on protocol design issues

� How to move from Centralized to Distributed

Alg.

� Synchronous and Asynchronous computation

� Why does the Asynchronous Bellman Ford

converge?

� Selfish behavior distributed systems

March 21, 2006 AKP: EECS122 Lecture 17 6

The Network is Heterogeneous

� Speed

� Dialup to terabit fiber

� Reliability

� Hosts: Distributed Server farms to 486 PC

� Links: Noisy wireless to virtually error free fiber

� Congestion

� Trustworthiness

� What is a general enough model to cover all of this?

4

March 21, 2006 AKP: EECS122 Lecture 17 7

Consensus over an Unreliable Link

� A and B in a connection over an unreliable link

� They both want to terminate the connection only if they are
certain that no more packets will arrive from the other user

A B

� A won’t terminate unless it knows that B knows it is about to
terminate.

� B won’t terminate unless it knows that A knows it is about to
terminate

March 21, 2006 AKP: EECS122 Lecture 17 8

Consensus Problem

� Suppose B tells A it can terminate and A receives this message,
say M

� A can terminate, but B will never know if A actually received M
and so it can’t terminate

A B

� A sends ACK(M) to B, but then A needs to makes sure that B
received this message, so it must wait for ACK(ACK(M))…

� A never terminates.

� In fact, NO protocol exists to solve this problem!

� Worth convincing yourself of this fact.

5

March 21, 2006 AKP: EECS122 Lecture 17 9

Link model

� Error correction

� Assume that errors can “eventually” corrected

� Propagation Delay

� Fixed

� Variable but no more than d

� Variable with no upper bound

� Other components of delay

� Queueing Delay

� Transmission Delay

� Packet order

� FIFO

� Can be delivered in arbitrary order

March 21, 2006 AKP: EECS122 Lecture 17 10

Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up,
its end points send messages to
all their neighbors who then
flood.

slow link

6

March 21, 2006 AKP: EECS122 Lecture 17 11

Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood

1. CD fails

DownDown

March 21, 2006 AKP: EECS122 Lecture 17 12

Maintaining accurate topology information

D

C

BA

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood.

1. CD fails
• A marks the link down

Down

Down

7

March 21, 2006 AKP: EECS122 Lecture 17 13

Maintaining accurate topology information

D

C

BA

UpUp

Up

Down

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up

March 21, 2006 AKP: EECS122 Lecture 17 14

Maintaining accurate topology information

D

C

BA

Up

Up

Down

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up

8

March 21, 2006 AKP: EECS122 Lecture 17 15

Maintaining accurate topology information

D

C

BA

Up

Up

Down

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
• A marks the link up

3. A marks the link down

March 21, 2006 AKP: EECS122 Lecture 17 16

Maintaining accurate topology information

D

C

BA

Up

Up

Up msg lost

Down

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood.

1. CD fails
• A marks the link down

2. CD comes back up
• A marks the link up

3. A marks the link down
4. CA fails

• Up message lost
A thinks CD is down when it is

actually up!

This can be fixed with

sequence numbers, but then

other problems emerge…

9

March 21, 2006 AKP: EECS122 Lecture 17 17

Synchronous v/s Asynchronous

Algorithms

� Synchronous algorithms can be described in terms

of global iterations. The time taken for a given

iteration is the time taken for the slowest processor

to complete that iteration: time driven

� E.g. TDM or SONET

� Asynchronous algorithms execute at a processor

based on received messages and internal state:

event driven

� E.g. IP protocols which must run over heterogeneous
systems

March 21, 2006 AKP: EECS122 Lecture 17 18

Slotted Time

� Slotted system 1,2,…,3…

� All nodes agree on slot boundaries

� “Have access to a global clock”

� Helps to co-ordinate the nodes

� Every node can run the same algorithm

� Proving correctness is generally tractable if the
centralized algorithm is analyzable

� Easier to understand the sequence of communication
between nodes

10

March 21, 2006 AKP: EECS122 Lecture 17 19

Synchronous Bellman-Ford (SBF)

� Every node runs the same algorithm

� Time is slotted and in every tick each node sends its distance
vector.

� At time h, node i has as an estimate of the shortest path to node 1
that has <= h+1 hops

� Dh+1(I,j) = minkεN(i) {Dh(k,j) + c(i,k)}

1

3

4

6

2

5

1

3 2

3

51

3

6

2

5

1

4 2

4

1

6

2

1

4

1

3

4

6

2

5

1

4

1
1

4
1

2

3

1

1

3

4

6

2

5

1

3 2

3

6

March 21, 2006 AKP: EECS122 Lecture 17 20

Synchronous Timing
1

3

4

6

2

5

1

4

1
1

4

2

3

1

1 32

1 32

idle idle idle

Node 1

Node 6

Great when links are reliable and similar…

11

March 21, 2006 AKP: EECS122 Lecture 17 21

Synchronous Timing
1

3

4

6

2

5

1

4

1
1

4

2

3

1

1 32

1 32

idle idle idle

Node 1

Node 6

idleidleidle

1 32 Node 5

But what when some links are much faster?

Node 5 suffers synchronization penalty

March 21, 2006 AKP: EECS122 Lecture 17 22

Synchronization Penalty
1

3

4

6

2

5

1

4

1
1

4

2

3

1

Slow nodes can create a penalty as well

1 32

1 32

idle idle idle

idleidleidle

Node 3

Node 4

1 32 Node 5

Penalty can be huge!

12

March 21, 2006 AKP: EECS122 Lecture 17 23

Implementing a Synchronous Algorithm

� Suppose the slowest process can complete

an iteration in time Tp

� Link delay is always less than Tl

� Then a slot size of Tp+Tl or more is sufficient

� But most processors may be idle most of the time

� What if Tp and or Tl are not known?

March 21, 2006 AKP: EECS122 Lecture 17 24

Locally Synchronous Computation

� Forget about fixed slots

� When a node has received all round k-1 messages

from its neighbors, it computes and sends out its

round k message

� Worst-case: As slow as synchronous computation

� Generally much faster

� Any synchronous algorithm that isn’t using time as a

part of the computation will also work when run in a

locally synchronous manner.

13

March 21, 2006 AKP: EECS122 Lecture 17 25

Local Synchronization
1

3

4

6

2

5

1

4

1
1

4

2

3

1

Send update k after you’ve heard update k-1 from
all neighbors.

1 32

1 32

idle idle idle

idleidleidle

Node 3

Node 4

1 32 Node 5

March 21, 2006 AKP: EECS122 Lecture 17 26

Compare with Synchronous
1

3

4

6

2

5

1

4

1
1

4

2

3

1

Slot size is affected by the slow node 4

1 32

1 32

idle idle idle

idleidleidle

Node 3

Node 4

1 32 Node 5

14

March 21, 2006 AKP: EECS122 Lecture 17 27

Asynchronous computation
1

3

4

6

2

5

1

4

1
1

4

2

3

1

1 2

1 32

idleidleidle

Node 1

Node 6

1 32 Node 5

No notion of “slot size” at all!

Why should this work?

3 4 5 6 7 8 9 10 11 12 13 14 15 16

March 21, 2006 AKP: EECS122 Lecture 17 28

Why bother with Asynchronous

Algorithms

� To reduce the synchronization penalty

� Difficult to get the synchronous algorithm to start

� The network is dynamic

� Flows

� Topology

� Think of the algorithm having to “restart” with a new set of

initial conditions, every time there is a failure

� Changes create “events” which may or may not

have global impact

� Event-driven algorithms better suited

15

March 21, 2006 AKP: EECS122 Lecture 17 29

Asynchronous Bellman Ford (ABF)

� Don’t even wait to hear from all neighbors!
� Use most recent information to compute new

distance vectors
� i.e. use last received values of D() and d

� Whenever ready, each node i computes
� D (i) = mink ε N(i) [D(k) + c(i,k)]

� Sends the result to each of its neighbors

� No notion of global iterations

� In general, nodes are using different and
possibly inconsistent estimates

March 21, 2006 AKP: EECS122 Lecture 17 30

Asynchronous Bellman Ford

� Regardless of how asynchronous the nodes
are, the algorithm will eventually converge to
the shortest path

� Links can go down and come up – but as
long as the topology is fixed after some time
t, the algorithm will eventually converge to the
shortest path

� Why?
� There’s some hope because the D(j) can only go

up if one of j’s neighbors estimates has gone up.

16

March 21, 2006 AKP: EECS122 Lecture 17 31

Idea

� There are too many different “runs” of ABF, so lets try to bound the range
of distance estimates of D(j) over time

� Do this by two different runs of Synchronous BF
� Set different initial estimates

� One run U, uses the familiar ones, i.e. estimate is infinity if no edge
� The other, L, uses -1if no edge!

� One bounds the estimates from above, one from below and both find
the correct the shortest paths eventually

� For every iteration k of the two SBF runs
� Lk(j)≤ Lk+1(j) ≤ D*(j) ≤ Uk+1(j)≤ Uk (j)

� For any asynchronous run, A, it is possible to show that for any
k, there is a time t such that

� Lk(j)≤ Lk+1(j) ≤ At(j) ≤ Uk+1(j)≤ Uk (j)

� Since both lower and upper runs converge to the optimal, so
will ABF eventually

March 21, 2006 AKP: EECS122 Lecture 17 32

Soft State

� State with Time-Out

� Example: A host joins a group by sending a “join” message to a
“host manager”. The manager adds the host to the group for the
next T seconds. If the host wants to stay in the group it must
send a refresh message within T seconds to the manager.
Otherwise it is dropped.

� Advantage: Manager robust to host failure

� Disadvantage: Too many messages

� Most internet protocols use this way of communicating

� Trades of simplicity of correctness with complexity of
communication

17

March 21, 2006 AKP: EECS122 Lecture 17 33

The nature of asynchronous distributed

protocols

� Generally non-intuitive

� Limited theory to work with

� Correctness extremely hard to prove

� Robustness hard to analyze

� Networking gurus have a vast knowledge of special

cases that can lead to strange behaviors

� Misconfiguration is a big cause of errors

� Soft state helps a lot, but wastes many messages!

� What about just broadcasting topology information

accurately so that these problems go away…

March 21, 2006 AKP: EECS122 Lecture 17 34

Trustworthiness

� Three levels
� Honest: Always in conformance of the protocol
� Selfish: May lie to get better performance out of the

protocol (BGP)
� Malicious: Unpredictable

� Internet Protocols (for the most part) assume Honest
protocol agents
� Unreliable infrastructure

� Infrastructure has gotten more reliable, and agents
have gotten less honest…

� Braess’s Paradox: Example of how Greediness and
distributed algorithms can lead to suboptimality

18

March 21, 2006 AKP: EECS122 Lecture 17 35

Congestion Sensitive Routing

S T

Q

R

x

1
x

1
Weights are delays/bit

1 unit of traffic from s to t

u bits on the upper path

1-u bits on the lower path

Depends on traffic

March 21, 2006 AKP: EECS122 Lecture 17 36

Each Node is Greedy

S T

Q

R

x

1
x

1
Weights are delays/bit

1 unit of traffic from s to t

u bits on the upper path

1-u bits on the lower path

•Node S minimizes

•Total delay = u(u+1) + (1-u)(2-u) = 2(u^2 – u +1)

•Delay minimized at u=.5

•So Total Delay = 1.5 s

Depends on traffic

19

March 21, 2006 AKP: EECS122 Lecture 17 37

Greediness leads to suboptimality

S T

Q

R

x

1
x

1

0

.5

.5

R is greedy

R diverts all .5 units

on to the new link

BRAESS’S PARADOX

Now total delay is 2!

Weights are delays/bit

1 unit of traffic from s to t

u bits on the upper path

1-u bits on the lower path

S still sends .5 on each path

March 21, 2006 AKP: EECS122 Lecture 17 38

Conclusions

� Distributed Algorithms are not intuitive

� There is no systematic way to design them
� Active research area is making some progress

� Until then use
� Hacking Abilities

� Simulation

� Control Theory

� Optimization

� Graph Theory

� Game Theory

� ….

� Greedy and malicious users complicate the protocol design
problem even more
� Another active research area making progress

� This is why it is hard to build networks…

