Distributed Algorithms in

Networks
EECS 122: Lecture 17

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley

Network Protocols often have unintended
effects

= TCP
o Example 1
= TCP connections detect congestion after it has happened
= May cause packet drops from uncongested “well behaved flows”
o Non congested flows back off
o Example 2
= Two TCP flows sharing the same router get uneven bandwidths
because one has a much smaller RTT than the other
= Routing
o Oscillation and countless other pathologies
= It is very difficult to avoid these unintended effects

March 21, 2006 AKP: EECS122 Lecture 17 4

The Internet is a HUGE Distributed
System

= Nodes are local processors
= Messages are exchanged over various kinds of links
= Nodes contain sensors which sense local changes
= Nodes control the network jointly
o Method for doing this is a distributed algorithm
o Example: Routing
= Time taken to solve the problem has two
components:
o Computation time taken for local processing

o Communication time for messages to be received over the
links

March 21, 2006 AKP: EECS122 Lecture 17 2

| Today

= Focus on protocol design issues

= How to move from Centralized to Distributed
Alg.

= Synchronous and Asynchronous computation

o Why does the Asynchronous Bellman Ford
converge?

= Selfish behavior distributed systems

March 21, 2006 AKP: EECS122 Lecture 17

Solving Global Problems in a Distributed
Setting

= Examples:
a Minimum Spanning Tree
o Shortest Path
o Leader Election
o Topology Broadcast
= Much easier to think in terms of centralized
algorithms

o Creativity needed to convert to the distributed
case

March 21, 2006 AKP: EECS122 Lecture 17 3

‘ The Network is Heterogeneous

= Speed

o Dialup to terabit fiber

Reliability

o Hosts: Distributed Server farms to 486 PC

o Links: Noisy wireless to virtually error free fiber
= Congestion

= Trustworthiness

= What is a general enough model to cover all of this?

March 21, 2006 AKP: EECS122 Lecture 17

‘ Consensus over an Unreliable Link

= A and B in a connection over an unreliable link
= They both want to terminate the connection only if they are
certain that no more packets will arrive from the other user

o—©

= A won't terminate unless it knows that B knows it is about to
terminate.

= B won't terminate unless it knows that A knows it is about to
terminate

March 21, 2006 AKP: EECS122 Lecture 17

Maintaining accurate topology information

Whenever a link goes down/up,
its end points send messages to
all their neighbors who then
flood.

slow link

|

March 21, 2006 AKP: EECS122 Lecture 17 10

Consensus Problem

= Suppose B tells A it can terminate and A receives this message,
say M

= A can terminate, but B will never know if A actually received M
and so it can't terminate

o—©

A sends ACK(M) to B, but then A needs to makes sure that B
received this message, so it must wait for ACK(ACK(M))...

= A never terminates.

In fact, NO protocol exists to solve this problem!

= Worth convincing yourself of this fact.

March 21, 2006 AKP: EECS122 Lecture 17

Maintaining accurate topology information

Whenever a link goes down/up,
its end points send
messages to all their
neighbors who then flood

1. CD fails

[O eeeeeccin 0

March 21, 2006 AKP: EECS122 Lecture 17 1

Link model

= Error correction
o Assume that errors can “eventually” corrected
= Propagation Delay
o Fixed
o Variable but no more than d
o Variable with no upper bound
= Other components of delay
o Queueing Delay
o Transmission Delay
= Packet order
a FIFO
o Can be delivered in arbitrary order

March 21, 2006 AKP: EECS122 Lecture 17

Maintaining accurate topology information

Whenever a link goes down/up,
A -B its end points send
€ messages to all their
neighbors who then flood.
1. CD fails
A marks the link down

L%
N

[O cececccds O

March 21, 2006 AKP: EECS122 Lecture 17 12

Maintaining accurate topology information

Whenever a link goes down/up,

its end points send
messages to all their
neighbors who then flood.
1. CD fails
A marks the link down
2. CD comes back up

[O — O

March 21, 2006 AKP: EECS122 Lecture 17 13

Maintaining accurate topology information

Whenever a link goes down/up,

- ¢ 5 its end points send

messages to all their

- neighbors who then flood.
1. CD fails
Up msg | + A marks the link down
2. CD comes back up

A marks the link up
3. A marks the link down
4. CA fails
Up message lost
A thinks CD is down when it is
actually up!

This can be fixed with
sequence numbers, but then
other problems emerge...

[O — O

March 21, 2006 AKP: EECS122 Lecture 17 16

Maintaining accurate topology information

Whenever a link goes down/up,

its end points send
messages to all their
neighbors who then flood.
1. CD fails
A marks the link down
2. CD comes back up

(O e— O

March 21, 2006 AKP: EECS122 Lecture 17 14

Synchronous v/s Asynchronous
Algorithms

= Synchronous algorithms can be described in terms
of global iterations. The time taken for a given
iteration is the time taken for the slowest processor
to complete that iteration: time driven

o E.g. TDM or SONET

Asynchronous algorithms execute at a processor
based on received messages and internal state:
event driven

o E.g. IP protocols which must run over heterogeneous
systems

March 21, 2006 AKP: EECS122 Lecture 17 17

Maintaining accurate topology information

Whenever a link goes down/up,

its end points send
messages to all their
neighbors who then flood.
1. CD fails
A marks the link down
2. CD comes back up
A marks the link up
3. A marks the link down

o

Lo

March 21, 2006 AKP: EECS122 Lecture 17 15

Slotted Time

= Slotted system 1,2,...,3...
o All nodes agree on slot boundaries
= “Have access to a global clock”
= Helps to co-ordinate the nodes

o Every node can run the same algorithm
= Proving correctness is generally tractable if the
centralized algorithm is analyzable
= Easier to understand the sequence of communication
between nodes

March 21, 2006 AKP: EECS122 Lecture 17 18

| Synchronous Bellman-Ford (SBF)

Every node runs the same algorithm

Time is slotted and in every tick each node sends its distance

vector.

= Attime h, node i has as an estimate of the shortest path to node 1
that has <= h+1 hops

= DMI(L) = mingyg {D(K,) + c(ik)}

3
1 2
4 1
1
1 1y 13 13
6
5
4 42 32 3

‘Synchronization Penalty 2 g,

}}% Node 3

Slow nodes can create a penalty as well

idle idle idle

[P - V0 - G e

idle idle idle

Penalty can be huge!

March 21, 2006 AKP: EECS122 Lecture 17 22

March 21, 2006 AKP: EECS122 Lecture 17 19
‘ Synchronous Timing ‘ ,
Great when links are reliable and similar... ‘4

idle idle idle

Node 1

Implementing a Synchronous Algorithm

= Suppose the slowest process can complete
an iteration intime T,

= Link delay is always less than T,

= Then a slot size of T,+T, or more is sufficient
o But most processors may be idle most of the time

= What if T, and or T, are not known?

March 21, 2006 AKP: EECS122 Lecture 17 23

‘ Synchronous Timing 2 a.
But what when some links are much faster? 4 : 7

[Bz - Vi) i N
v v

‘ 1 ‘ ‘2 ‘ ‘ 3[Node 6

W . 0 L%

idle idle idle
Node 5 suffers synchronization penalty

March 21, 2006 AKP: EECS122 Lecture 17 21

| Locally Synchronous Computation

Forget about fixed slots

= When a node has received all round k-1 messages
from its neighbors, it computes and sends out its
round k message

= Worst-case: As slow as synchronous computation

Generally much faster

Any synchronous algorithm that isn’t using time as a

part of the computation will also work when run in a

locally synchronous manner.

March 21, 2006 AKP: EECS122 Lecture 17 24

‘ Local Synchronization

3
1 2
Q=
Send update k after you've heard update k-1 from + g
1

all neighbors.
idle idle idle

Node 3

‘ T ‘ 2 ‘ 3 ‘ Node 4

[i Vi G Node 5

idle idle idle

March 21, 2006 AKP: EECS122 Lecture 17

Why bother with Asynchronous
Algorithms

= To reduce the synchronization penalty
= Difficult to get the synchronous algorithm to start
= The network is dynamic

o Flows

o Topology

= Think of the algorithm having to “restart” with a new set of
initial conditions, every time there is a failure

= Changes create “events” which may or may not
have global impact
o Event-driven algorithms better suited

March 21, 2006 AKP: EECS122 Lecture 17 28

‘ Compare with Synchronous | ,
’
Slot size is affected by the slow node 4 g

’% Node 3

N7/ BN/ 7 s

| Wz, - T - Vst noves

| Asynchronous Bellman Ford (ABF)

= Don’t even wait to hear from all neighbors!
o Use most recent information to compute new
distance vectors
= i.e. use last received values of D() and d
o Whenever ready, each node i computes
= D (i) = min, g [D(K) + c(i,K)]
= Sends the result to each of its neighbors
o No notion of global iterations

= In general, nodes are using different and
possibly inconsistent estimates

March 21, 2006 AKP: EECS122 Lecture 17 29

idle idle idle
March 21, 2006 AKP: EEC8122 Lecture 17 26
| Asynchronous computation @ g,
No notion of “slot size" at all! 4 g

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘ 13‘ 14‘ 15‘ 16‘N°d€1

1 2 3 Node 6

Y IS o

>
idle idle idle

Why should this work?

March 21, 2006 AKP: EECS122 Lecture 17

‘ Asynchronous Bellman Ford

= Regardless of how asynchronous the nodes
are, the algorithm will eventually converge to
the shortest path

= Links can go down and come up — but as
long as the topology is fixed after some time
t, the algorithm will eventually converge to the
shortest path

u Why'?
o There’s some hope because the D(j) can only go

up if one of j's neighbors estimates has gone up.

March 21, 2006 AKP: EECS122 Lecture 17 30

‘ Idea

There are too many different “runs” of ABF, so lets try to bound the range
of distance estimates of D(j) over time

Do this by two different runs of Synchronous BF
o Setdifferent initial estimates
= Onerun U, uses the familiar ones, i.e. estimate is infinity if no edge
. The other, L, uses -1if no edge!
o One bounds the estimates from above, one from below and both find
the correct the shortest paths eventually
For every iteration k of the two SBF runs
o LKj= L(j) < D*(j) s Uk(j)= UK ()
For any asynchronous run, A, it is possible to show that for any
k, there is a time t such that
o L= L) < A s U(j)< UR()
Since both lower and upper runs converge to the optimal, so
will ABF eventually

March 21, 2006

AKP: EECS122 Lecture 17 31

‘ Trustworthiness

= Three levels

o Honest: Always in conformance of the protocol
o Selfish: May lie to get better performance out of the

protocol (BGP)
o Malicious: Unpredictable

= Internet Protocols (for the most part) assume Honest

protocol agents
o Unreliable infrastructure

= Infrastructure has gotten more reliable, and agents

have gotten less honest...

= Braess’s Paradox: Example of how Greediness and
distributed algorithms can lead to suboptimality

March 21, 2006 AKP: EECS122 Lecture 17

Soft State

State with Time-Out

Example: A host joins a group by sending a “join” message to a
“host manager”. The manager adds the host to the group for the
next T seconds. If the host wants to stay in the group it must
send a refresh message within T seconds to the manager.
Otherwise it is dropped.

Advantage: Manager robust to host failure

Disadvantage: Too many messages

Most internet protocols use this way of communicating

Trades of simplicity of correctness with complexity of
communication

March 21, 2006

AKP: EECS122 Lecture 17 32

‘ Congestion Sensitive Routing

Depends on traffic

N

Weights are delays/bit
1unit of traffic froms to
u bits on the upper path

1-u bits on the lower path

March 21, 2006 AKP: EECS122 Lecture 17

The nature of asynchronous distributed

protocols

Generally non-intuitive

Limited theory to work with

o Correctness extremely hard to prove

o Robustness hard to analyze

Networking gurus have a vast knowledge of special
cases that can lead to strange behaviors

o Misconfiguration is a big cause of errors

Soft state helps a lot, but wastes many messages!
What about just broadcasting topology information
accurately so that these problems go away...

March 21, 2006

AKP: EECS122 Lecture 17 33

' Each Node is Greedy

Depends on traffic

01\ |

*Node S minimizes

*Total delay = u(u+1) + (1-u)(2-u) =

+Delay minimized at u=.5
+So Total Delay =1.5 s

Weights are delays/bit

1 unit of traffic froms to t
u bits on the upper path

1-u bits on the lower path

2(u"2 —u +1)

March 21, 2006 AKP: EECS122 Lecture 17

| Greediness leads to suboptimality
S still sends .5 on each path

Weights are delays/bit

1 unit of traffic froms to t
u bits on the upper path

1-u bits on the lower path

BRAESS'S PARADOX

Ris greedy Now total delay is 2!
R diverts all .5 units
on to the new link

March 21, 2006 AKP: EECS122 Lecture 17 37

Conclusions

Distributed Algorithms are not intuitive
There is no systematic way to design them
o Active research area is making some progress
o Until then use
= Hacking Abilities
= Simulation
= Control Theory
= Optimization

Graph Theory
Game Theory

= Greedy and malicious users complicate the protocol design
problem even more

o Another active research area making progress
This is why it is hard to build networks...

March 21, 2006 AKP: EECS122 Lecture 17 38

