Cyclic Redundancy Check (CRC)

 $\hfill \square$ view data bits, ${\bf d_1d_2....d_n},$ as a polynomial: $A(x) = \sum_{i=0}^{n-1} d_i x^i.$

choose r+1 bit pattern (generator), 6 (leftmost and rightmost bits are both 1), viewed again as polynomial

$$G(x) = \sum_{i=0}^{r} g_i x^i$$

□ choose r CRC bits, R, such that

$$A(x)x^r + R(x) = G(x)H(x)$$

for some polynomial H(x). Here, addition of the polynomial coefficients is modulo 2 arithmetic.

 In other words, the polynomial represented by the concatenation of the data bits and the CRC bits is divisible.

Link Layer

- □ Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-Layer Addressing
- □ Ethernet

DataLink Laver

CRC (continued)

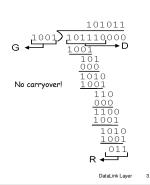
- □ Note that, since in modulo 2 arithmetic, R(x) = -R(x), one can also interpret R(x) as the remainder when $A(x)x^r$ is divided by G(x).
- □ Error detection: divide the received string by G(x), and if the remainder is non-zero, announce an error.
- Claim: this CRC can detect burst of errors as long as the burst is of length r or shorter.

DataLink Layer

Multiple Access Links and Protocols

Two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch and host
- shared wire or medium
 - o traditional Ethernet
 - o 802,11 wireless LAN



DataLink Laver

CRC Example

Addition of 2 polynomials is the same as mod 2 addition of the components of the two vectors of 0,1's (i.e. without carryover)

R = remainder $\left[\frac{D \cdot 2^r}{G}\right]$

Multiple Access protocols

- single shared channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

 distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit

DataLink Layer

Ideal Multiple Access Protocol

Shared channel of rate R bps

- 1. When one node wants to transmit, it can send at rate $\mathsf{R}.$
- 2. When M nodes want to transmit, each can send at average rate $\mbox{R/M}$
- 3. Fully decentralized:
 - o no special node to coordinate transmissions
 - o no synchronization of clocks, slots
- 4. Simple

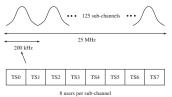
DataLink Layer

Channel Partitioning MAC protocols: FDMA FDMA: frequency division multiple access channel spectrum divided into frequency bands each node assigned fixed frequency band unused transmission time in frequency bands go idle example: 6-node LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

MAC Protocols: a taxonomy

Three broad classes:

- □ Channel Partitionina
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - o allocate piece to node for exclusive use


□ Random Access

- o channel not divided, allow collisions
- "recover" from collisions
- □ "Taking turns" (Centralized polling or token-based)
 - Nodes take turns, but nodes with more to send can take longer turns

DataLink Layer

Example: GSM

- □ Global System for Mobile (GSM): digital cellular standard developed in Europe.
- 25MHz band divided in 200 kHz subchannels, further divided into time-slots.

DataLink Laver 11

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- □ access to channel in "rounds"
- each node gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-node LAN, 1,3,4 have pkt, slots 2,5,6 idle.

DataLink Layer

Channel Partitioning: Pros and Cons

- □ Pro: no conflict between different nodes.
- □ Con: serious waste of resource when a node has nothing to transmit.
- □ Good for continuous traffic like voice
- □ Not very efficient for bursty traffic.

DataLink Layer 12

Random Access Protocols

- □ When node has packet to send
 - o transmit at full channel data rate R.
 - o no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- □ random access MAC protocol specifies:
 - o how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- □ Examples of random access MAC protocols:
 - o slotted ALOHA
 - ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

DataLink Layer 13

Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send

- N nodes with many frames to send, each transmits in slot with probability p (new arrival or re-Tx)
- □ prob that node 1 has success in a slot = p(1-p)^{N-1}
- □ prob that any node has a success = Np(1-p)^{N-1}

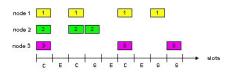
- □ For max efficiency with N nodes, find p* that maximizes Np(1-p)^{N-1}
- □ For many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives 1/e = .37

At best: channel used for useful transmissions 37% of time!

DataLink Laver 16

Slotted ALOHA

Assumptions


- □ all frames same size
- □ time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- $lue{}$ nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation

- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. p until success

DataLink Layer 14

Slotted ALOHA

Pros

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- □ simple

Cons

- collisions, wasting slots
- □ idle slots
- nodes may be able to detect collision in less than time to transmit packet

DataLink Layer 15