Stuff

- □ Project phase III out, due April 25.
- Guest lecturer next Tues: Vern Paxson on Network Security.
- □ Lecture today:
 - Finish multiple access
 - Link layer addressing
 - Hub vs Switch

DataLink Layer

.

Ethernet uses CSMA/CD

- □ No slots
- adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense
- transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

DataLink Layer

Ethernet CSMA/CD algorithm

- Adaptor receives datagram from net layer & creates frame
- 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame!
- 4. If adapter detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, adapter enters exponential backoff: after the mth collision, adapter chooses a K at random from {0,1,2,...,2^m-1}. Adapter waits K·512 bit times and returns to Step 2

DataLink Layer

3

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits

Bit time: .1 microsec for 10 Mbps Ethernet; for K=1023, wait time is about 50 msec

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer
- ☐ first collision: choose K from {0,1}; delay is K· 512 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten collisions, choose K from {0,1,2,3,4,...,1023}

DataLink Layer

CSMA/CD efficiency

- □ T_{prop} = max prop between 2 nodes in LAN
- □ t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop} / t_{trans}}$$

- □ Efficiency goes to 1 as tprop goes to 0
- □ Goes to 1 as t_{trans} goes to infinity
- Much better than ALOHA, but still decentralized, simple, and cheap

DataLink Layer

F

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- o share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access,
 1/N bandwidth allocated even if only 1 active node!

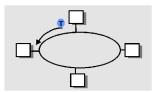
Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

DataLink Layer


"Taking Turns" MAC protocols

Polling/Scheduling:

- master node "invites" slave nodes to transmit in turn
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Token passing (token ring, FDDI):

- control token passed from one node to next sequentially.
- □ token message
- concerns:
 - o token overhead
 - latency
 - single point of failure (token)

DataLink Layer

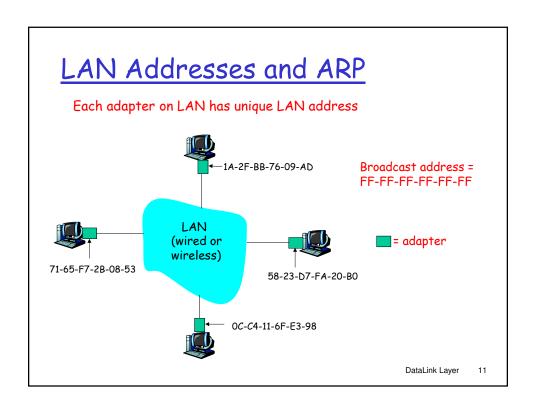
Summary of MAC protocols

- What do you do with a shared media?
 - Channel Partitioning, by time, frequency or code
 - · Time Division, Frequency Division
 - Random partitioning (dynamic),
 - · ALOHA, S-ALOHA, CSMA, CSMA/CD
 - · carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - · CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
 - Taking Turns
 - · polling from a central site, token passing

DataLink Layer

Link Layer

- □ Introduction and services
- Error detection and correction
- □ Multiple access protocols
- □ Ethernet
- Link-Layer Addressing
- Hubs and Switches

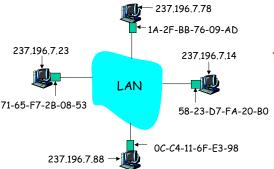

DataLink Layer

9

MAC Addresses and ARP

- □32-bit IP address:
 - o *network-layer* address
 - \circ used to get datagram to destination IP subnet
- ■MAC (or LAN or physical or Ethernet) address:
 - used to get frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs) burned in the adapter ROM

DataLink Layer


LAN Address (more)

- □ MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address → portability
 - o can move LAN card from one LAN to another
- □ IP hierarchical address NOT portable
 - o depends on IP subnet to which node is attached

DataLink Layer

ARP: Address Resolution Protocol

Question: how to determine MAC address of B knowing B's IP address?

- Each IP node (Host, Router) on LAN has ARP table
- ARP Table: IP/MAC address mappings for some LAN nodes

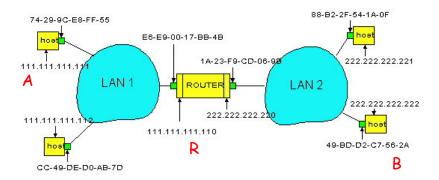
< IP address; MAC address; TTL>

 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

DataLink Layer

13

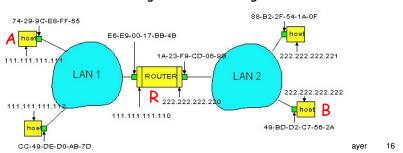
ARP protocol: Same LAN (network)


- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - Dest MAC address = FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

DataLink Layer

Routing to another LAN


walkthrough: send datagram from A to B via R assume A know's B IP address

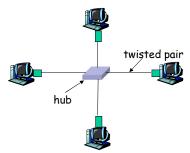
 Two ARP tables in router R, one for each IP network (LAN)

DataLink Layer

- A creates datagram with source A, destination B
- □ A uses ARP to get R's MAC address for 111.111.111.110
- □ A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
- A's adapter sends frame
- R's adapter receives frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- □ R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

Link Layer

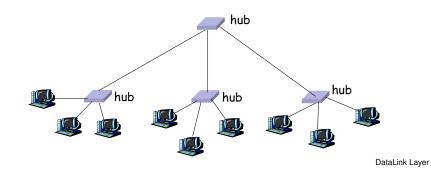
- □ Introduction and services
- Error detection and correction
- Multiple access protocols
- □ Ethernet
- Link-Layer Addressing
- Hubs and Switches


DataLink Layer

17

Hubs

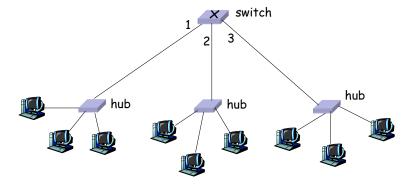
Hubs are essentially physical-layer repeaters:


- o bits coming from one link go out all other links
- o at the same rate
- o no frame buffering
- o no CSMA/CD at hub: adapters detect collisions
- o provides net management functionality

DataLink Layer

Interconnecting with hubs

- □ Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain
- □ Can't interconnect 10BaseT & 100BaseT



Switch

- Link layer device
 - o stores and forwards Ethernet frames
 - examines frame header and selectively forwards frame based on MAC dest address
 - when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - o hosts are unaware of presence of switches
- □ plug-and-play, self-learning
 - o switches do not need to be configured

DataLink Layer

Forwarding

 How do determine onto which LAN segment to forward frame?

DataLink Layer

21

Self learning

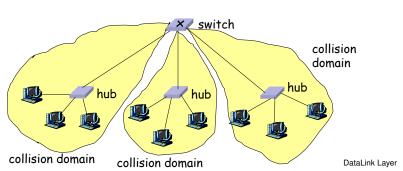
- ☐ A switch has a switch table
- entry in switch table:
 - o (MAC Address, Interface, Time Stamp)
 - o stale entries in table dropped (TTL can be 60 min)
- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - o records sender/location pair in switch table

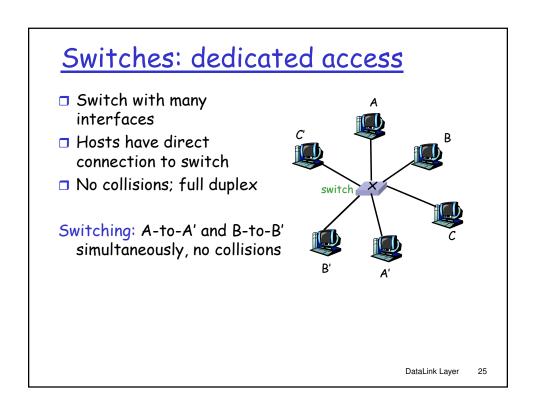
DataLink Layer

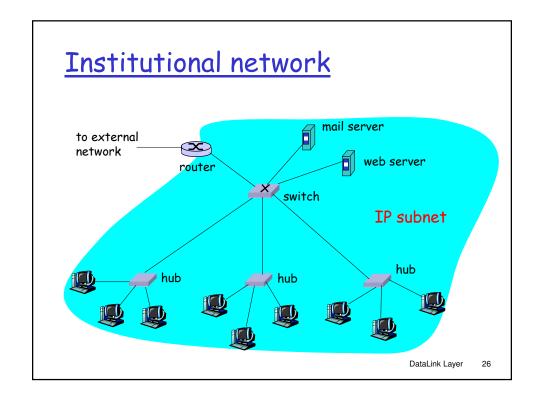
Filtering/Forwarding

When switch receives a frame:

```
index switch table using MAC dest address
if entry found for destination
then{
    if dest on segment from which frame arrived
        then drop the frame
    else forward the frame on interface indicated
    }
else flood


forward on all but the interface
on which the frame arrived
```


DataLink Layer


23

Switch: traffic isolation

- switch installation breaks subnet into LAN segments
- switch filters packets:
 - same-LAN-segment frames not usually forwarded onto other LAN segments
 - segments become separate collision domains

