Multiple Access in Cellular and 802.11 Systems

1

<u>GSM</u>

- The total bandwidth is divided into many narrowband channels. (200 kHz in GSM)
- □ Users are given time slots in a narrowband channel (8 users)
- A channel partitioning protocol!
- Co-channel interference between users in different cells is minimized by reusing the same channel only in cells far apart (low frequency reuse)

Frequency Reuse

Frequency reuse is poor in narrowband systems because of lack of interference averaging.

3

<u>CDMA (IS-95, CDMA 2000, UMTS)</u>

- Universal frequency reuse: all the users in all cells share the same bandwidth (1.25 MHz in IS-95)
- Each user spreads its signal across the whole bandwidth and appears as noise to each other.
- The data of each user is extracted by its unique code and complex signal processing
- □ Interference averaging across cells: each interferer only contributes a small fraction of the interference.
- Power control and soft handoff.
- Maximum number of users that can be accommodated depends on the interference tolerable.

IEEE 802.11 Wireless LAN

- □ 802.11b
 - 2.4-5 GHz unlicensed radio spectrum
 - o up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - Not for multiple access, but for frequency diversity
 - widely deployed, using base stations

- □ 802.11a
 - 5-6 GHz range
 - o up to 54 Mbps
 - OFDM PHY layer
- □ 802.11g
 - o 2.4-5 GHz range
 - o up to 54 Mbps
- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

5

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS)
 (aka "cell") in infrastructure
 mode contains:
 - o wireless hosts
 - access point (AP): base station

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- □ host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - o selects AP to associate with
 - will typically run DHCP to get IP address in AP's subnet

7

IEEE 802.11: random multiple

access

- avoid collisions: 2* nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other nodes
 - In Ethernet, sensing is limited by propagation delay.
 - In 802.11, sensing is limited by the hidden terminal problem.

Hidden Terminal Problem

- □ B, A hear each other
- □ B, C hear each other
- □ A, C can not hear each other
- \square means A, C unaware of each other's transmissions.

9

Collision Detection

- □ In Ethernet, collision detection ends useless transmission quickly
- □ 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (many dBs lower)
 - can't sense all collisions in any case: hidden terminal problem
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

Sender

1 if sense channel idle then

transmit entire frame (no CD)

2 if sense channel busy then

Choose a random backoff time and count down whenever the channel is sensed idle.

When the counter is zero, then transmit.

Question: Why not transmit once the channel is sensed idle?

Receiver:

- if CRC checks for frame, return ACK

Sender:

 If no ACK, choose a backoff time from a larger interval and try again (retransmission for link layer reliability)

11

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- RTS heard by all nodes
 - o sender transmits data frame
 - o other stations defer transmissions

Avoid data frame collisions completely using small reservation packets!

Channel Partitioning, Random Access and Scheduling

- Channel partitioning is inflexible in accommodating bursty traffic.
- Random access allows "on-demand" allocation, but has significant overhead due to collision or RTS/CTS.
- 4th generation cellular systems are shifting to explicit centralized scheduling of resources by the BS.

