Internet Architecture II

EECS 122: Lecture 3

Department of Electrical Engineering and Computer Sciences University of California Berkeley

Today's Outline

- Administrivia
- Last lecture we focused on protocols and layering
- Today, let's begin talking about performance
- The internet as a network of Queues
- The components of delay
- Little's Law
- Throughput
- Measuring performance

Why care about performance

- The internet is a datagram network with only "best effort" service
- If "best effort" is lousy the network will be useless
- Remember the World Wide Wait?
- Some applications such as video are quite performance sensitive
- Can't understand the behavior of a network without some understanding of how it performs

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- this often happens because arrivals are random and bursty
- packets queue, wait for turn
packet being transmitted (delay)

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- when packet arrives to full queue, packet is dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

One packet, One Link

time 0

At what time is the sending buffer empty? P/R : Packet Xmission Delay does the first bit get delivered?: T : Propagation Delay does the last bit get delivered?: T+P/R: Arrival time at B

- Given P, R and L can you determine/approximate T ?
- No!
- S : speed of the underlying medium L : length of the link $\mathrm{T}=\mathrm{L} / \mathrm{S}$

$$
1 / \text { speed }=3.3 \text { usec in free space }
$$

4 usec in copper
5 usec in fiber

One Packet, One Link Packer Size: Pbits Link Speed/Bandwidth: R bps Propagation delay: T sec

At what time is the sending buffer empty? P/R : Packet Xmission Time does the first bit get delivered?: T : Propagation Delay does the last bit get delivered?: $T+P / R$: Arrival time at B
$P / R \ll T:$

$P / R \gg T:$

Timing Diagram

$$
\begin{aligned}
& \mathrm{P}=1 \mathrm{Kbyte} \\
& \mathrm{R}=1 \mathrm{Gbps} \\
& 100 \mathrm{Km} \text {, fiber => } \\
& \mathrm{T}=500 \text { usec } \\
& \mathrm{P} / \mathrm{R}=8 \text { usec }
\end{aligned}
$$

$\mathrm{P}=1 \mathrm{Kbyte}$
$\mathrm{R}=100 \mathrm{Mbps}$
1 Km , fiber => $\mathrm{T}=5$ usec P/R = 80 usec

Switching: Store and Forward

- A packet is stored (enqueued) before being forwarded (sent)

Store and Forward: Multiple Packet

Example

Processing Delay

- Make sure packet has not been corrupted
- Forward to right output link queue
- Schedule the next packet to be transmitted from queue

Components of Per Hop Delay

- Propagation delay: time it takes the signal to 1 Only random from source to destination component
- Packet transmission time: time it takes the sender to transmit all bits of the packet
Queuing delay: time the packet need to wait before being transmitted because the queue was not empty whenit arrived
- Processing Time: time it takes a router/switch to process the packet header, manage memory, etc

Why Queueing Delay Confounds Performance Analysis

- Arrival processes are uncertain
- Modeled probabilistically
- Analyzing a network of queues is very hard
- Thousands of papers exist trying calculate measures of performance assuming specific arrival processes
- Simulated based on real data
- Traces collected from actual network traffic
- Drawing general conclusions from traces is very hard
- Good news: enough is known to be able to get many useful insights

Example

- Packets of average length P arrive at an average rate of a, where the arrival process follows a particularly nasty distribution
- The network consists of many hops over copper, fiber, satellite, undersea cable etc.
- There are many other contending sessions
- The average delay of a packet is D

Question, how many packets are in the network on average?

Delays and Queues

Delays and Queues

Delays and Queues

Delays and Queues

Avg Occupancy = Area

Little's Law

- Shaded Area up to time T is equal to both

1. $D(1)+D(2)+\ldots+D(A(T))$
2. $\int_{0}^{\top} \mathrm{Q}(\mathrm{t}) \mathrm{dt}$

- Divide and multiple 1 by $\mathrm{A}(\mathrm{T})$:
. $[D(1)+D(2)+\ldots .+D(A(T)) / A(T)] A(T)$
- Divide both (rewritten) 1 and 2 by T and take limits
- $D a=Q$
average occupancy $=$ (average Delay) \times (average arrival rate)

Little's Law

- Does Little's Law hold if:
- the packet sizes are variable?
- Yes
- if the packets are not received in the order they are sent?
- Yes

If there is loss in the system?

- Depends

Application of Little's Law

- Suppose packets are of unequal length and the average length is 1000 bits
- The arrival rate of packets is 200 packets/sec
- $\mathrm{R}=1 \mathrm{Mb} / \mathrm{s}$
- What fraction of the time is the link busy?
- This is defined as Link Utilization

Application of Little's Law

- There can be 1 or 0 packets in the system
- α is still 200
- $D=P / R=1000 / 1000000=1$ millisecond
- By Little's Law utilization is $\alpha \mathrm{D}=0.2$
- Link is idle 80% of the time

Utilization for a "typical queue"
average queueing delay

- $\alpha P / R \sim 0$: average queueing delay small
- α P/R $\rightarrow 1$: delays become large
- α P/R > 1: more "work" arriving than can be serviced, average delay infinite!

- (The text refers to $\alpha P / R$ as traffic intensity)

Throughput

- The average number of bits successfully delivered per second.
- Throughput of a lossless link: R X (Utilization)
average queueing delay

Example: Windows Based Flow Control

- Connection:
- Send W bits (window size)
- Wait for ACKs
- Repeat
- Assume the round-trip-time is RTT seconds
- Throughput $=\mathrm{W} /$ RTT bps
- Numerical example:

> W $=64$ Kbytes
> RTT $=200 \mathrm{~ms}$
> Throughput $=\mathrm{W} / \mathrm{T}=2.6 \mathrm{Mbps}$

What about broadcast networks?

- There are n nodes sharing the broadcast channel
- When a node transmits a packet it collide with one from another node which has an overlapping transmission time
- Collisions can be detected by the sender
- What should a sender do upon detecting a collision?
- Throughput and delay depend heavily on scheme
- Back off for a fixed time: very low throughput
- Random back off time: better throughput
- More detail later...

Practical Matters

- Many mathematical queueing models are very difficult to analyze
- Analysis makes often makes simplifying assumptions on $A(t)$
- Analysis is hairy and incomprehensible to most
- Analysis only works for toy problems
- Mostly useful to generate insights
- A realistic network is very difficult to simulate
- How do you know your improvement to Bittorrent is actually better?
- Measurements
- gather data from a real network
- realistic, specific
- Victim of that particular network's design
- Simulations: run a program that pretends to be a real network
- e.g., NS network simulator, Nachos OS simulator
- Usually use combination of methods

"Real" Internet delays and routes

- What do "real" Internet delay \& loss look like?
- Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i :
- sends three packets that will reach router i on path towards destination
- router i will return packets to sender
- sender times interval between transmission and reply.

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

What we learned

- How to think of the internet as a network of queues

The components of delay

- Little’s Law
- Utilization
- Simple examples of throughput
- Link, TCP connection, broadcast network
- Measuring delays

