
1

Application Protocols
EECS 122: Lecture 6

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley

February 2, 2006 EECS122 Lecture 6 (AKP) 2

Today

� Adminstrivia

� The last two lectures have exposed you to building

programs and simulations of networks

� Today we focus on specific applications and

protocols

� DNS

� HTTP

� SMTP

� Lots of details but focus on the concepts…

2

February 2, 2006 EECS122 Lecture 6 (AKP) 3

Where do Application Protocols Run?

BGP HTTP RTP DNS

TCP UDP

IP

Ethernet FDDI Token Etc.

Network

IP

TCP UDP

Application

February 2, 2006 EECS122 Lecture 6 (AKP) 4

Where do Application Protocols Run?

� Host-Host:
� HTTP, SMTP

� Host-Network:
� DNS

� Network-Network:
� Routing Protocols (e.g. OSPF)

The Core provides
a network service

to the hosts

Host Host

3

February 2, 2006 EECS122 Lecture 6 (AKP) 5

Internet transport protocols services

TCP service:

� connection-oriented: setup

required between client and

server processes

� reliable transport between

sending and receiving process

� flow control: sender won’t

overwhelm receiver

� congestion control: throttle

sender when network overloaded

� does not provide: timing,

minimum bandwidth guarantees

UDP service:

� unreliable data transfer

between sending and

receiving process

� does not provide:

connection setup, reliability,

flow control, congestion

control, timing, or

bandwidth guarantee

February 2, 2006 EECS122 Lecture 6 (AKP) 6

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Vonage,Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

4

February 2, 2006 EECS122 Lecture 6 (AKP) 7

Domain Name Service

� Resolves a host name names into an IP address

� Why host names?

� To organize machines

� Eg. robotics.eecs.berkeley.edu

� This conveys more information to humans than 128.32.48.234

� Why IP addresss?

� The network needs an address to route

� Host Names yield information to people and IP

addresses yield information to routers

February 2, 2006 EECS122 Lecture 6 (AKP) 8

DNS: History

� Initially all host-addess mappings were in a file
called hosts.txt (in /etc/hosts)
� Changes were submitted to SRI by email
� New versions of hosts.txt were ftp’d periodically from SRI
� An administrator could pick names at their discretion

� As the internet grew this system broke down
because
� SRI couldn’t handled the load
� The system was unreliable since there was a single point of

contact
� Names were not unique
� Many hosts had inaccurate copies of hosts.txt

� Internet growth was threatened!

5

February 2, 2006 EECS122 Lecture 6 (AKP) 9

DNS Features

� Hierarchical Namespace

� Distributed architecture for storing names
� Nameservers assigned zones of the hierarchical

namespace

� Backup servers available for redundancy

� Administration divided along the same hierarchy
� DNS client is simple: Resolver

� Client server interaction on UDP Port 53 (but can
use TCP if desired)

February 2, 2006 EECS122 Lecture 6 (AKP) 10

Hierarchical Namespace

� The first level names are called “Top Level

Domains”

� Depth of tree is arbitrary (limit 128)

� Domains are subtrees

� E.g. berkeley.edu and eecs.berkeley.edu

� Name collision avoided

� E.g. berkeley.edu and berkeley.com

root

edu com gov mil org net uk fr

berkeley mit

eecs sims

argus

6

February 2, 2006 EECS122 Lecture 6 (AKP) 11

Hierarchical Administration

root

edu com gov mil org net uk fr

berkeley mit

eecs sims

argus

root

edu com gov mil org net uk fr

berkeley

eecs sims A zone corresponds to an administrative authority that is
responsible for that portion of the hierarchy

February 2, 2006 EECS122 Lecture 6 (AKP) 12

Hierarchical Server Organization

� Each server has authority over a portion of
the hierarchy
�A server maintains only a subset of all names

� Each server contains all the records for the
hosts in its zone

� Each server needs to know other servers that
are responsible for the other portions of the
hierarchy
�Every server knows the root

�Root server knows about all top-level domains

7

February 2, 2006 EECS122 Lecture 6 (AKP) 13

TLD and Authoritative Servers

� Top-level domain (TLD) servers: responsible for
com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.
� Network solutions maintains servers for com TLD

� Educause for edu TLD

� Authoritative DNS servers: organization’s DNS
servers, providing authoritative hostname to IP
mappings for organization’s servers (e.g., Web and
mail).
� Can be maintained by organization or service provider

February 2, 2006 EECS122 Lecture 6 (AKP) 14

Local Name Server

� Does not strictly belong to hierarchy

� Each ISP (residential ISP, company,

university) has one.

� Also called “default name server”

� When a host makes a DNS query, query is

sent to its local DNS server

� Acts as a proxy, forwards query into hierarchy.

8

February 2, 2006 EECS122 Lecture 6 (AKP) 15

How does a name get resolved

� Query “walks” its way up and down the

hierarchy

� Iterated query

� I don’t know, but here’s who to ask next

� Recursive query

� I don’t know right now, but I’ll get back to you…

February 2, 2006 EECS122 Lecture 6 (AKP) 16

requesting host
lids.mit.edu

top.eecs.berkeley.edu

root DNS server

local DNS server
dns.mit.edu

1

2
3

4

5

6

authoritative DNS server
ns1.berkeley.edu

7
8

TLD DNS server

Iterated Query

� Host at lids.mit.edu

wants IP address for

top.eecs.berkeley.edu.

� “I don’t know, but

here’s who to ask

next”

9

February 2, 2006 EECS122 Lecture 6 (AKP) 17

requesting host
lids.mit.edu

top.eecs.berkeley.edu

root DNS server

local DNS server
dns.mit.edu

1

2
3

4
5

6

authoritative DNS server
ns1.berkeley.edu

7

8

Recursive Query

� Host at lids.mit.edu

wants IP address for

top.eecs.berkeley.edu.

� I don’t know right

now, but I’ll get back

to you…

TLD DNS server

February 2, 2006 EECS122 Lecture 6 (AKP) 18

DNS: caching and updating records

� once (any) name server learns mapping, it

caches mapping

� cache entries timeout (disappear) after some

time

� TLD servers typically cached in local name

servers

� Thus root name servers not often visited

� update/notify mechanisms under design by

IETF

� RFC 2136

� http://www.ietf.org/html.charters/dnsind-charter.html

10

February 2, 2006 EECS122 Lecture 6 (AKP) 19

DNS records

DNS: distributed db storing resource records (RR)

� Type=NS

� name is domain (e.g.

foo.com)

� value is hostname of

authoritative name server for

this domain

RR format: (name, value, type, ttl)

� Type=A

� name is hostname

� value is IP address

� Type=CNAME

� name is alias name for some

“canonical” (the real) name

www.ibm.com is really

servereast.backup2.ibm.com

� value is canonical name

� Type=MX

� value is name of mailserver

associated with name

February 2, 2006 EECS122 Lecture 6 (AKP) 20

Inserting records into DNS

� Example: just created startup “Network Utopia”
� Register name networkuptopia.com at a registrar (e.g.,

Network Solutions)
� Need to provide registrar with names and IP addresses of your

authoritative name server (primary and secondary)

� Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

� Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

11

February 2, 2006 EECS122 Lecture 6 (AKP) 21

Robustness and Security

� For non-root severs
multiple servers are
common as well

� Caching provides
another form of
redundancy and
quicker response
time

� DOS attack in
October 2002

� Secure DNS

{A,..,M}.Root-Servers.Net

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,

CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

February 2, 2006 EECS122 Lecture 6 (AKP) 22

DNS and Virtual IP addresses

� DNS records don’t have to store the real IP address of the
host

� All hosts in the acme.com may have the same IP address

� A firewall at this IP address decides whether to “admit” a
transport level connection (firewall) to the host x.acme.com

� A load balancer decides to forward the connection to one of
several identical servers

� In both cases, the gateway must use a local lookup to decide
which end host to direct the connection

� Redirection to be to anywhere! Even another country.

� Allows for distributed caching architectures

� Makes tracking the geographic location of a name very
difficult

12

February 2, 2006 EECS122 Lecture 6 (AKP) 23

Example: www.akamai.com

� From Berkeley
C:\>ping www.akamai.com
Pinging a1440.g.akamai.net [64.164.108.148] with 32 bytes of data:

Reply from 64.164.108.148: bytes=32 time=10ms TTL=249

Reply from 64.164.108.148: bytes=32 time=10ms TTL=249

Reply from 64.164.108.148: bytes=32 time=10ms TTL=249

Reply from 64.164.108.148: bytes=32 time=20ms TTL=249

Ping statistics for 64.164.108.148:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 10ms, Maximum = 20ms, Average = 12ms

� From the NY Area
� 63.240.15.146

� From the UK
� 194.82.174.224

February 2, 2006 EECS122 Lecture 6 (AKP) 24

Examples

13

February 2, 2006 EECS122 Lecture 6 (AKP) 25

DNS Summary

� DNS is a crucial part of the internet

� Namespace is hierarchical

� Administration is distributed

� It is vulnerable in various ways but no more

than other parts of the internet infrastructure

� Its performance is enhanced by caching

� DNS “Hacks” can enable many interesting

things

February 2, 2006 EECS122 Lecture 6 (AKP) 26

The WWW

� A distributed database of URLs

� Core components:
� Servers which store files and execute remote commands

� Browsers retrieve and display “pages” of content linked by
hypertext

� Each link is a URL

� Can build arbitrarily complex applications, all of
which share a uniform client!

� Need a protocol to transfer information between
clients and servers
� HTTP

14

February 2, 2006 EECS122 Lecture 6 (AKP) 27

Uniform Record Locator

� protocol://host-name:port/directory-path/resource

� Extend the idea of hierarchical namespaces to include anything in a

file system

� ftp://www.eecs.berkeley.edu/122/Lecture6/presentation.ppt

� Extend to program executions as well…

� http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B%40Bulk&MsgI

d=2604_1744106_29699_1123_1261_0_28917_3552_1289957100&Se

arch=&Nhead=f&YY=31454&order=down&sort=date&pos=0&view=a&he

ad=b

� Server side processing can be incorporated in the name

February 2, 2006 EECS122 Lecture 6 (AKP) 28

HTTP overview

HTTP: hypertext transfer
protocol

� Web’s application layer

protocol

� client/server model

� client: browser that

requests, receives,

“displays” Web objects

� server: Web server sends

objects in response to

requests

� HTTP 1.0: RFC 1945

� HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HT
TP
 re
que

st

HTTP response

HT
TP
 re
spo

nse

15

February 2, 2006 EECS122 Lecture 6 (AKP) 29

HTTP overview (continued)

Uses TCP:

� client initiates TCP connection

(creates socket) to server, port

80

� server accepts TCP connection

from client

� HTTP messages (application-

layer protocol messages)

exchanged between browser

(HTTP client) and Web server

(HTTP server)

� TCP connection closed

HTTP is “stateless”

� server maintains no

information about past

client requests

Protocols that maintain “state”

are complex!

� past history (state) must be

maintained

� if server/client crashes, their

views of “state” may be

inconsistent, must be

reconciled

aside

FTP

February 2, 2006 EECS122 Lecture 6 (AKP) 30

HTTP request message

� two types of HTTP messages: request, response

� HTTP request message:

� ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

16

February 2, 2006 EECS122 Lecture 6 (AKP) 31

HTTP request message: general format

February 2, 2006 EECS122 Lecture 6 (AKP) 32

Uploading form input

Post method:

� Web page often

includes form input

� Input is uploaded to

server in entity body

URL method:

� Uses GET method

� Input is uploaded in

URL field of request

line:

www.somesite.com/animalsearch?monkeys&banana

17

February 2, 2006 EECS122 Lecture 6 (AKP) 33

Method types

HTTP/1.0

� GET

� POST

� HEAD

� asks server to leave
requested object out of
response

HTTP/1.1

� GET, POST, HEAD

� PUT

� uploads file in entity
body to path specified in
URL field

� DELETE

� deletes file specified in
the URL field

February 2, 2006 EECS122 Lecture 6 (AKP) 34

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol
status code

status phrase)

header
lines

data, e.g.,
requested
HTML file

18

February 2, 2006 EECS122 Lecture 6 (AKP) 35

HTTP response status codes

200 OK

� request succeeded, requested object later in this message

301 Moved Permanently

� requested object moved, new location specified later in this message

(Location:)

400 Bad Request

� request message not understood by server

404 Not Found

� requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

February 2, 2006 EECS122 Lecture 6 (AKP) 36

Persistence

� A web page typically contains many objects
� E.g. Images

� Each object must be requested with a separate
http “Get” command

� Non Persistent Connection:
� Different _______ connection for each object request.

� HTTP 1.0

� Persistent Connection
� Reuse the same TCP connection for each object

request

� HTTP 1.1

TCP

19

February 2, 2006 EECS122 Lecture 6 (AKP) 37

HTTP/1.0 Performance

� Create a new TCP connection for each resource
� Large number of embedded objects in a web page

� Many short lived connections

� Requires 2 RTTs per object

� TCP transfer
� Too slow for small object

� May never exit slow-start phase

� Connections may be set up in parallel (5 is default in
most browsers)

� OS overhead for each TCP connection

February 2, 2006 EECS122 Lecture 6 (AKP) 38

Persistent HTTP

� server leaves connection open after sending
response

� TCP overhead minimized

� subsequent HTTP messages between same
client/server sent over open connection

No pipelining:

� client issues new request only

when previous response has

been received

� one RTT for each referenced

object

Pipelining:

� client sends requests as soon

as it encounters a referenced

object

� as little as one RTT for all the

referenced objects

� default in HTTP/1.1

20

February 2, 2006 EECS122 Lecture 6 (AKP) 39

The Advantage of Pipelining

Client Server

Image 1

Image 2

Text

Finish

page

Client Server

Image 1

Image 2
Text

Finish

page

February 2, 2006 EECS122 Lecture 6 (AKP) 40

Caching

� Store frequently referenced
objects closer to the clients
� Saves Time: No need to go all the

way to the server (access could look
“instantaneous”)

� Saves Access Bandwidth

� Saves Web Server Resources

� Limitations?
� Frequently changing objects

� Hit counts

� Privacy

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

21

February 2, 2006 EECS122 Lecture 6 (AKP) 41

Web caches (proxy server)

� user sets browser: Web
accesses via cache

� browser sends all HTTP
requests to cache

� object in cache: cache

returns object

� else cache requests

object from origin

server, then returns

object to client

Goal: satisfy client request without involving origin

server

client

Proxy
server

client

HTTP request

HT
TP
 re
que

st

HTTP response

HT
TP
 re
spo

nse

HT
TP

req
ues

t

HT
TP

res
pon

se

origin
server

Acts as both

Client and server

February 2, 2006 EECS122 Lecture 6 (AKP) 42

Conditional GET

� Goal: don’t send object if
cache has up-to-date
cached version

� cache: specify date of
cached copy in HTTP
request

If-modified-since:

<date>

� server: response contains
no object if cached copy is
up-to-date:

HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

22

February 2, 2006 EECS122 Lecture 6 (AKP) 43

Other Web Proxy Functions

� Filter requests/responses

� Modify requests/responses

� Change http requests to ftp requests

� Change response content, e.g., transcoding to display

data efficiently on a Palm Pilot

� Provide better privacy

February 2, 2006 EECS122 Lecture 6 (AKP) 44

Cookies: An Example of How

Applications Add State
� When you are shopping at website

� How does the merchant to track what you are browsing?

� When you were at the site last?

� Suppose you don’t login…

� An ad network wants to make sure it doesn’t keep showing
you the same ad on each site that you visit

� Browsers help implement these functions by allowing a
webserver to maintain state on your computer

� This state is called a Cookie!

23

February 2, 2006 EECS122 Lecture 6 (AKP) 45

Cookies

� When initial HTTP requests arrives at site, site creates a
unique ID and creates an entry in backend database for ID

� Four components:

1) cookie header line of HTTP response message

2) cookie header line in HTTP request message

3) cookie file kept on user’s host, managed by user’s browser

4) back-end database at Web site

� Additional Cookie Functions

� authorization

� shopping carts

� recommendations

� user session state (Web e-mail)

February 2, 2006 EECS122 Lecture 6 (AKP) 46

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

24

February 2, 2006 EECS122 Lecture 6 (AKP) 47

Other interesting state creating examples

� Annoying

� Spyware

� Viruses

� Potentially useful

� Client-side scripting

� E.g. Ajax: Asynchronous JavaScript And XML

February 2, 2006 EECS122 Lecture 6 (AKP) 48

HTTP and DNS

� Both

� are client – server applications

� have decentralized management

� enable access to vast amounts of distributed information

� are based on open protocols

� are distributed databases

� But

� Http runs on TCP and DNS on UDP

� Http runs between two end hosts, whereas DNS is part of
the network infrastructure

25

February 2, 2006 EECS122 Lecture 6 (AKP) 49

Electronic Mail

Three major components:

� user agents

� mail servers

� simple mail transfer protocol: SMTP

User Agent

� a.k.a. “mail reader”

� composing, editing, reading mail

messages

� e.g., Eudora, Outlook, elm,

Netscape Messenger

� outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

February 2, 2006 EECS122 Lecture 6 (AKP) 50

Electronic Mail: mail servers

Mail Servers

� mailbox contains incoming
messages for user

� message queue of outgoing
(to be sent) mail messages

� SMTP protocol between mail
servers to send email
messages

� client: sending mail server

� “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

26

February 2, 2006 EECS122 Lecture 6 (AKP) 51

Electronic Mail: SMTP [RFC 2821]

� uses TCP to reliably transfer email message from client to
server, port 25

� direct transfer: sending server to receiving server

� three phases of transfer

� handshaking (greeting)

� transfer of messages

� closure

� command/response interaction

� commands: ASCII text

� response: status code and phrase

� messages must be in 7-bit ASCII

February 2, 2006 EECS122 Lecture 6 (AKP) 52

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message and “to”
bob@someschool.edu

2) Alice’s UA sends
message to her mail
server; message placed in
message queue

3) Client side of SMTP
opens TCP connection
with Bob’s mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

27

February 2, 2006 EECS122 Lecture 6 (AKP) 53

Sample SMTP interaction

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

February 2, 2006 EECS122 Lecture 6 (AKP) 54

Try SMTP interaction for yourself:

� telnet servername 25

� see 220 reply from server

� enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client

(reader)

28

February 2, 2006 EECS122 Lecture 6 (AKP) 55

SMTP: final words

� SMTP uses persistent
connections

� SMTP requires message
(header & body) to be in 7-
bit ASCII

� SMTP server uses
CRLF.CRLF to determine

end of message

Comparison with HTTP:

� HTTP: pull

� SMTP: push

� both have ASCII
command/response
interaction, status codes

� HTTP: each object
encapsulated in its own
response msg

� SMTP: multiple objects sent
in multipart msg

February 2, 2006 EECS122 Lecture 6 (AKP) 56

Mail message format

SMTP: protocol for exchanging

email msgs

RFC 822: standard for text

message format:

� header lines, e.g.,

� To:

� From:

� Subject:

different from SMTP commands!

� body

� the “message”, ASCII

characters only

header

body

blank
line

29

February 2, 2006 EECS122 Lecture 6 (AKP) 57

Message format: multimedia extensions

� MIME: multimedia mail extension, RFC 2045, 2056

� additional lines in msg header declare MIME content
type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.........................

......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

February 2, 2006 EECS122 Lecture 6 (AKP) 58

Mail access protocols

� SMTP: delivery/storage to receiver’s server

� Mail access protocol: retrieval from server

� POP: Post Office Protocol [RFC 1939]

� authorization (agent <-->server) and download

� IMAP: Internet Mail Access Protocol [RFC 1730]

� more features (more complex)

� manipulation of stored msgs on server

� HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

30

February 2, 2006 EECS122 Lecture 6 (AKP) 59

What did we learn today?

� Application Protocols utilize the transport protocol to

make the internet useful

� Examples: DNS, HTTP, SMTP

� Some concepts:

� Connection Persistence

� Caching

� How applications add client state via the browser

� Remember: The goal in this class is not master any

one application protocol but to understand the

concepts that make them ultra scalable and useful

February 2, 2006 EECS122 Lecture 6 (AKP) 60

Conclusion

� The applications we
discussed today are not
complex but they have
had huge global impact

� Simplicity, trust in
distributed control and
open standards helped
make this happen.

