Transport Layer

EECS 122
Feb. 7, 2006

Slides adapted from Kurose and Ross.

Transport Layer

1

Transport services and protocols

O provide /ogical communication
between app processes
running on different hosts

0 transport protocols run in
end systems

O send side: breaks app
messages info segments,
passes to network layer

O rev side: reassembles
segments info messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

==

physical

[application]

transport.

Transport Layer 4

Administrivia

0 HW 1 due in class; solns out this afternoon
OHW 2 out later today

Transport Layer

2

Transport vs. network layer

O network layer: logical communication between
hosts

O transport layer: logical communication between
processes
O relies on, enhances, network layer services

Processes can be different applications (HTTP, DNS, etc)
running on the same host and they are multiplexed
together.

Transport Layer 5

Transport Layer

Our goals:
O understand principles
behind transport

0 learn about transport
layer protocols in the

layer services: Internet:
O reliable data transfer O UDP: connectionless
o flow control transport
o congestion control O TCP: connection-oriented
transport

Transport Layer

3

Multiplexing/demultiplexing

Demultiplexing at rcv host: Multiplexing at send host:

delivering received segments gathering data from multiple
to correct socket sockets, enveloping data with

header (later used for
demultiplexing)

[=socket D =process
application (P3D (PL application CP2D (P4 application
1 —]
transport “¥ra sport transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

Transport Layer

6

Internet transport-layer protocols

0 reliable, in-order
delivery (TCP)
O reliable data service
O congestion control
o flow control
O connection setup
O unreliable, unordered
delivery: UDP
O no-frills extension of
“best-effort” IP
0 services not available:
O delay guarantees
O bandwidth guarantees

‘ physical

[application]

transport

{_network_|

Transport Layer 7

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
O treat segment contents O compute checksum of
as sequence of 16-bit received segment
integers O check if computed checksum

O checksum: addition (1's
complement sum) of
segment contents

O sender puts checksum
value into UDP checksum
field

equals checksum field value:
O NO - error detected

O YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 10

UDP: User Datagram Protocol [RFC 768]

0 “no frills," "bare bones"
Internet transport
protocol

O “best effort” service, UDP
segments may be:

O lost
O delivered out of order
to app

O connectionless:

o no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

Why is there a UDP?

O no connection
establishment (which can
add delay)

0 simple: no connection state
at sender, receiver

0 small segment header

O no congestion control: UDP
can blast away as fast as
desired

Transport Layer 8

Internet Checksum Example

O Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

O Example: add two 16-bit integers

1110011001100110
1101010101010101

wraparound ('1 01 1 1 01110111011

sum 1011101110111100
checksum 01000 0011

Transport Layer 11

-
o
o
o
[N
o
o

UDP: more

O often used for streaming

multimedia apps 32 bits
O loss tolerant Length, in | Source port #| dest port #
O rate sensitive byte:eofm Le}r?r\\hlgngfh checksum
O other UDP uses mf,uding'
o DNs header
O SNMP
O reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!

UDP segment format

Transport Layer 9

Principles of Reliable data transfer

O important in app., transport, link layers

receiver
process

reliable channel,

application
layer

rdt_send() | [daia] [dota]fdeliver data ()
relicble data reliable data
[transfer protocol transfer protocol
(sending side) (recelving side)

udt_send 0} tzat_rev()

L‘ unreliable channeljj

(b) service implementation

transport
layer

(a) provided service

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 12

Reliable data transfer: getting started

rdt_send()

: called from above,

(e.g., by app.). Passed data to
deliver fo receiver upper layer

deliver data() : called by
rdt to deliver data to upper

rdt_send() l deliver_data()
send [relicble data relicble data receive
id fransfer profocol fransfer protocol id
Slde |sending side) (receiving side) side

udt_send()t [packeT] Irdt_rcv (¢}

/ L{ iunrelioble channel)J

udt_send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 13

Rdt2.0: channel with bit errors

O underlying channel may flip bits in packet
O checksum to detect bit errors
O the question: how to recover from errors:
O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK
O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors
O sender retransmits pkt on receipt of NAK
O new mechanisms in rdt2.0 (beyond rdt1.0):
O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 16

Reliable data transfer: getting started

we'll:
O incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
0 consider only unidirectional data transfer
O but control info will flow on both directions!
0 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state fransition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 14

rdt2.0: FSM specification

rdt_send(data)
snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)

rdt_rev(revpkt) &&

isNAK(rcvpkt)
[rdt_rev(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rev(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
Sender sends one packet, axiraci(rovpkL.data)

then waits for receiver deliver_data(data)
response udt_send(ACK)

stop and wait

Transport Layer 17

Rdt1.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
O no bit errors
O no loss of packets
O separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 15

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d(sndpk

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

_ rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

hrdt_rev(revpkl) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)

udt_send(ACK)

Transport Layer 18

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d(sndpk

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 19

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? o sender retransmits current

O sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! O sender adds seguence

O can't just retransmit: number to each pkt
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt

Transport Layer 20

