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Transport Layer

EECS 122

Feb. 7, 2006

Slides adapted from Kurose and Ross.
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Administrivia

� HW 1 due in class; solns out this afternoon

�HW 2 out later today
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Transport Layer

Our goals:

� understand principles 
behind transport 
layer services:
� reliable data transfer

� flow control

� congestion control

� learn about transport 
layer protocols in the 
Internet:
� UDP: connectionless 
transport

� TCP: connection-oriented 
transport
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Transport services and protocols

� provide logical communication
between app processes 
running on different hosts

� transport protocols run in 
end systems 

� send side: breaks app 
messages into segments, 
passes to  network layer

� rcv side: reassembles 
segments into messages, 
passes to app layer

� more than one transport 
protocol available to apps

� Internet: TCP and UDP
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Transport vs. network layer

� network layer: logical communication between 
hosts

� transport layer: logical communication between 
processes 
� relies on, enhances, network layer services

Processes can be different applications (HTTP, DNS, etc) 
running on the same host and they are multiplexed 
together.
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Multiplexing/demultiplexing
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delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:
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Internet transport-layer protocols

� reliable, in-order 
delivery (TCP)
� reliable data service

� congestion control 

� flow control

� connection setup

� unreliable, unordered 
delivery: UDP
� no-frills extension of 
“best-effort” IP

� services not available: 
� delay guarantees

� bandwidth guarantees
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UDP: User Datagram Protocol [RFC 768]

� “no frills,” “bare bones”
Internet transport 
protocol

� “best effort” service, UDP 
segments may be:

� lost

� delivered out of order 
to app

� connectionless:

� no handshaking between 
UDP sender, receiver

� each UDP segment 
handled independently 
of others

Why is there a UDP?
� no connection 

establishment (which can 
add delay)

� simple: no connection state 
at sender, receiver

� small segment header

� no congestion control: UDP 
can blast away as fast as 
desired
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UDP: more

� often used for streaming 
multimedia apps

� loss tolerant

� rate sensitive

� other UDP uses
� DNS

� SNMP

� reliable transfer over UDP: 
add reliability at 
application layer

� application-specific 
error recovery!

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including
header
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UDP checksum

Sender:
� treat segment contents 

as sequence of 16-bit 
integers

� checksum: addition (1’s 
complement sum) of 
segment contents

� sender puts checksum 
value into UDP checksum 
field

Receiver:
� compute checksum of 

received segment

� check if computed checksum 
equals checksum field value:

� NO - error detected

� YES - no error detected. 
But maybe errors 
nonetheless? More later 
….

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment
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Internet Checksum Example
� Note

�When adding numbers, a carryout from the 
most significant bit needs to be added to the 
result

� Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0

1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0

1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum
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Principles of Reliable data transfer

� important in app., transport, link layers

� characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started

We’ll:

� incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)

� consider only unidirectional data transfer
� but control info will flow on both directions!

� use finite state machines (FSM)  to specify 
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Rdt1.0: reliable transfer over a reliable channel

� underlying channel perfectly reliable
� no bit errors

� no loss of packets

� separate FSMs for sender, receiver:
� sender sends data into underlying channel

� receiver read data from underlying channel

Wait for 
call from 

above packet = make_pkt(data)
udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver

Transport Layer 16

Rdt2.0: channel with bit errors

� underlying channel may flip bits in packet
� checksum to detect bit errors

� the question: how to recover from errors:
� acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK

� negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

� sender retransmits pkt on receipt of NAK

� new mechanisms in rdt2.0 (beyond rdt1.0):
� error detection

� receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

Wait for 

call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 

ACK or 
NAK

Wait for 

call from 
belowsender

receiver
rdt_send(data)

Λ

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.0: operation with no errors

Wait for 

call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 

ACK or 
NAK

Wait for 

call from 
below

rdt_send(data)

Λ
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rdt2.0: error scenario

Wait for 

call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 

ACK or 
NAK

Wait for 

call from 
below

rdt_send(data)

Λ
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rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

� sender doesn’t know what 
happened at receiver!

� can’t just retransmit: 
possible duplicate

Handling duplicates: 
� sender retransmits current 

pkt if ACK/NAK garbled

� sender adds sequence 
number to each pkt

� receiver discards (doesn’t 
deliver up) duplicate pkt


