
1

Transport Layer 1

Transport Layer

EECS 122

Feb. 7, 2006

Slides adapted from Kurose and Ross.

Transport Layer 2

Administrivia

� HW 1 due in class; solns out this afternoon

�HW 2 out later today

Transport Layer 3

Transport Layer

Our goals:

� understand principles
behind transport
layer services:
� reliable data transfer

� flow control

� congestion control

� learn about transport
layer protocols in the
Internet:
� UDP: connectionless
transport

� TCP: connection-oriented
transport

Transport Layer 4

Transport services and protocols

� provide logical communication
between app processes
running on different hosts

� transport protocols run in
end systems

� send side: breaks app
messages into segments,
passes to network layer

� rcv side: reassembles
segments into messages,
passes to app layer

� more than one transport
protocol available to apps

� Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport Layer 5

Transport vs. network layer

� network layer: logical communication between
hosts

� transport layer: logical communication between
processes
� relies on, enhances, network layer services

Processes can be different applications (HTTP, DNS, etc)
running on the same host and they are multiplexed
together.

Transport Layer 6

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

2

Transport Layer 7

Internet transport-layer protocols

� reliable, in-order
delivery (TCP)
� reliable data service

� congestion control

� flow control

� connection setup

� unreliable, unordered
delivery: UDP
� no-frills extension of
“best-effort” IP

� services not available:
� delay guarantees

� bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport Layer 8

UDP: User Datagram Protocol [RFC 768]

� “no frills,” “bare bones”
Internet transport
protocol

� “best effort” service, UDP
segments may be:

� lost

� delivered out of order
to app

� connectionless:

� no handshaking between
UDP sender, receiver

� each UDP segment
handled independently
of others

Why is there a UDP?
� no connection

establishment (which can
add delay)

� simple: no connection state
at sender, receiver

� small segment header

� no congestion control: UDP
can blast away as fast as
desired

Transport Layer 9

UDP: more

� often used for streaming
multimedia apps

� loss tolerant

� rate sensitive

� other UDP uses
� DNS

� SNMP

� reliable transfer over UDP:
add reliability at
application layer

� application-specific
error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including
header

Transport Layer 10

UDP checksum

Sender:
� treat segment contents

as sequence of 16-bit
integers

� checksum: addition (1’s
complement sum) of
segment contents

� sender puts checksum
value into UDP checksum
field

Receiver:
� compute checksum of

received segment

� check if computed checksum
equals checksum field value:

� NO - error detected

� YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 11

Internet Checksum Example
� Note

�When adding numbers, a carryout from the
most significant bit needs to be added to the
result

� Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Transport Layer 12

Principles of Reliable data transfer

� important in app., transport, link layers

� characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

3

Transport Layer 13

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 14

Reliable data transfer: getting started

We’ll:

� incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

� consider only unidirectional data transfer
� but control info will flow on both directions!

� use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 15

Rdt1.0: reliable transfer over a reliable channel

� underlying channel perfectly reliable
� no bit errors

� no loss of packets

� separate FSMs for sender, receiver:
� sender sends data into underlying channel

� receiver read data from underlying channel

Wait for
call from

above packet = make_pkt(data)
udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 16

Rdt2.0: channel with bit errors

� underlying channel may flip bits in packet
� checksum to detect bit errors

� the question: how to recover from errors:
� acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

� negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

� sender retransmits pkt on receipt of NAK

� new mechanisms in rdt2.0 (beyond rdt1.0):
� error detection

� receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 17

rdt2.0: FSM specification

Wait for

call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for

ACK or
NAK

Wait for

call from
belowsender

receiver
rdt_send(data)

Λ

Sender sends one packet,
then waits for receiver
response

stop and wait

Transport Layer 18

rdt2.0: operation with no errors

Wait for

call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for

ACK or
NAK

Wait for

call from
below

rdt_send(data)

Λ

4

Transport Layer 19

rdt2.0: error scenario

Wait for

call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for

ACK or
NAK

Wait for

call from
below

rdt_send(data)

Λ

Transport Layer 20

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

� sender doesn’t know what
happened at receiver!

� can’t just retransmit:
possible duplicate

Handling duplicates:
� sender retransmits current

pkt if ACK/NAK garbled

� sender adds sequence
number to each pkt

� receiver discards (doesn’t
deliver up) duplicate pkt

