
1

Transport Layer 1

TCP and Congestion Control

EECS 122

Valentine’s Day, 2006

Transport Layer 2

�HW 2: Ethereal Labs

Lecture today:

Wrap up on reliable data transfer.

See how principles are applied to TCP

Talk about congestion control.

Transport Layer 3

Forward Erasure/Error Correction:
A Different Approach to RDT

�Our approach to reliable data delivery is
based on ACKs and retransmissions, i.e.
feedback.

� Long RTTs => long delays and/or low
throughput

�An alternative approach is via forward
corrections for errors and losses.

Transport Layer 4

Error Dectection and Loss
Recovery

Message to Hong Kong:

Hope this will be our last Valentine’s Day apart.

One extra parity-check “word” can detect error.

It can also recover from a single loss.

With more parity-check “words”, one can
recover from multiple losses.

Transport Layer 5

Example: Fountain Codes

Transport Layer 6

TCP

�Overview

� Reliable data transfer

� Flow control

� Congestion control

2

Transport Layer 7

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

� full duplex data:
� bi-directional data flow
in same connection

� MSS: maximum segment
size

� connection-oriented:
� handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

� flow controlled:
� sender will not
overwhelm receiver

� point-to-point:
� one sender, one receiver

� reliable, in-order byte
steam:
� no “message boundaries”

� pipelined:
� TCP congestion and flow
control set window size

� send & receive buffers

socket

door
TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 8

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 9

TCP seq. #’s and ACKs
Seq. #’s:

� byte stream
“number” of first
byte in segment’s
data

ACKs:

� seq # of next byte
expected from
other side

� cumulative ACK

Full-duplex:

ACK’s for one
direction are
piggybacked on data
segments in the other
direction

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt
of echoed

‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

Transport Layer 10

TCP reliable data transfer

� TCP creates rdt
service on top of IP’s
unreliable service

� Pipelined segments

� Cumulative acks

� TCP uses single
retransmission timer

� Retransmissions are
triggered by:
� timeout events

� duplicate acks (fast
retransmit)

� TimeOut intervals
often doubled after a
timeout.

Transport Layer 11

TCP sender events:
data rcvd from app:

� Create segment with
seq #

� seq # is byte-stream
number of first data
byte in segment

� start timer if not
already running (think
of timer as for oldest
unacked segment)

� expiration interval:
TimeOutInterval

timeout:

� retransmit segment
that caused timeout

� restart timer

Ack rcvd:

� If acknowledges
previously unacked
segments
� update what is known to
be acked

� start timer if there are
outstanding segments

Transport Layer 12

TCP= Hybrid Go-Back-N and
Selective Repeat

� Cumulative ACK (like GBN)

�Out-of-order segments often buffered at
receiver and not discarded (but no
individual ACK sent)

3

Transport Layer 13

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

� longer than RTT
� but RTT varies

� too short: premature
timeout

� unnecessary
retransmissions

� too long: slow reaction
to segment loss

Q: how to estimate RTT?
� SampleRTT: measured time from

segment transmission until ACK
receipt

� ignore retransmissions

� SampleRTT will vary, want
estimated RTT “smoother”

� average several recent
measurements, not just
current SampleRTT

Transport Layer 14

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

� Exponential weighted moving average

� influence of past sample decreases exponentially fast

� typical value: αααα = 0.125

Transport Layer 15

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Transport Layer 16

TCP Round Trip Time and Timeout

Setting the timeout
� EstimtedRTT plus “safety margin”

� large variation in EstimatedRTT -> larger safety margin

� first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +

ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

Transport Layer 17

Fast Retransmit

� Time-out period often
relatively long:
� long delay before
resending lost packet

� Detect lost segments
via duplicate ACKs.
� Sender often sends
many segments back-to-
back

� If segment is lost,
there will likely be many
duplicate ACKs.

� If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
� fast retransmit: resend
segment before timer
expires

Transport Layer 18

TCP Flow Control

� receive side of TCP
connection has a
receive buffer:

� speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

� app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

4

Transport Layer 19

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

� spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

� Rcvr advertises spare
room by including value
of RcvWindow in
segments

� Sender limits unACKed
data to RcvWindow
� guarantees receive
buffer doesn’t overflow

