TCP and Congestion Control

EECS 122
Valentine's Day, 2006

Transport Layer

Error Dectection and Loss
Recovery

Message to Hong Kong:
Hope this will be our last Valentine's Day%

One extra parity-check "word" can detect error.
Tt can also recover from a single loss.

With more parity-check "words”, one can
recover from multiple losses.

Transport Layer 4

OHW 2: Ethereal Labs

Lecture today:

Wrap up on reliable data transfer.
See how principles are applied to TCP

Talk about congestion control.

Transport Layer

Example: Fountain Codes

source symbols

1]z |3 e k2| k1|

v [encodsd symbols

ot symbols (packets)

recsived snoodsd symbots

recovered sourcs symbols

Transport Layer 5

Forward Erasure/Error Correction:
A Different Approach to RDT

0 Our approach to reliable data delivery is
based on ACKs and retransmissions, i.e.
feedback.

OLong RTTs => long delays and/or low
throughput

O An alternative approach is via forward
corrections for errors and losses.

Transport Layer

Tcp

O Overview

O Reliable data transfer
O Flow control

0 Congestion control

Transport Layer 6

TCP: Overview

3 point-to-point:

O one sender, one receiver
O reliable, in-order byte

steam:

O no “message boundaries”
O pipelined:

O TCP congestion and flow

control set window size

0 send & receive buffers

__ socket
‘door

RFCs: 793, 1122, 1323, 2018, 2581

o full duplex data:

O bi-directional data flow
in same connection

O MSS: maximum segment
size

O connection-oriented:

o handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

o sender will not
overwhelm receiver

9,

Transport Layer 7

TCP reliable data transfer

O TCP creates rdt
service on top of IP's
unreliable service

O Pipelined segments
O Cumulative acks

O TCP uses single
retransmission timer

O Retransmissions are
triggered by:
O timeout events
O duplicate acks (fast
refransmit)
0 TimeOut intervals
often doubled after a

timeout.
send_base nexfsegnum dready usable, not
¢ ack’ed yet sent

(T EN pew

£ window size
N
Transport Layer 10

TCP segment structure

32 bits

URG: urgent data
(generally not used)

source port # | dest port #

counting

ACK: ACK #

sequence number

by bytes
of data

valid ——atknowledgement number

(not segments!)

Fead| not
PSH: push data now mlﬁlﬂf

sum Urg data pnter

(generally not used)— | ch

Receive window

bytes
revr willing

RST, SYN, FIN:—| Optjofis (variable length)

connection estab

to accept

(setup, teardown
commands)

Internet
checksum
(as in UDP)

application
data
(variable length)

Transport Layer 8

TCP sender events:

data rcvd from app: timeout:

O Create segment with O retransmit segment
seq # that caused timeout

0 seq # is byte-stream O restart timer
number of first data Ack revd:

byte in segment 0 If acknowledges

O start timer if not previously unacked
already running (think segments
of timer as for oldest o update what is known to
unacked segment) be acked

O expiration interval: O start timer if there are
TimeOutInterval outstanding segments

Transport Layer 11

TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
“number" of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

o cumulative ACK

Full-duplex:
ACK's for one
direction are
piggybacked on data
segments in the other
direction

@ Host A

User

=" .~ 'C, echoes
o=12: Aokt back 'C’
Sed”

host ACKs

receipt Seqeq

T e

Seq=q2
fypes 2 ACK<7g,
c : datg < reg
host ACKs

Host B w

receipt of

time

simple telnet scenario

Transport Layer 9

TCP= Hybrid Go-Back-N and

Selective Repeat

0 Cumulative ACK (like GBN)

0 Out-of-order segments often buffered at
receiver and not discarded (but no
individual ACK sent)

Transport Layer 12

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 SampleRTT: measured time from
O longer than RTT segment transmission until ACK
O but RTT varies receipt

O too short: premature O ignore retransmissions

timeout O sampleRTT will vary, want
O unnecessary estimated RTT "smoother
retransmissions O average several recent

0 too long: slow reaction measurements, not just
to segment loss current SampleRTT

Transport Layer 13

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 16

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + O*SampleRTT
O Exponential weighted moving average

0 influence of past sample decreases exponentially fast
O typical value: & =0.125

Transport Layer 14

Fast Retransmit

O Time-out period often 0O If sender receives 3
relatively long: ACKs for the same
o long delay before data, it supposes that
resending lost packet segment after ACKed
O Detect lost segments data was lost:
via duplicate ACKs. o fast retransmit: resend
O Sender often sends segment before timer

many segments back-to- expires
back

O If segment is lost,
there will likely be many
duplicate ACKs.

Transport Layer 17

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

00

RIT (miiseconds)

150

1 8 5 22 29 3% 4 s 5 e 71 78 8 %@ % 106
time (seconnds)

[~ SampleRTT = Esimated AT

Transport Layer 15

TCP Flow Control

flow control

sender won't overflow
receiver's buffer by

transmitting too much,

0 receive side of TCP
connection has a

receive buffer: too fast
f— RevWindow —f

j//% Z wptcnion 3 speed-matching
s e service: matching the
0 send rate to the
b RevBuflr ———— receiving app's drain

rate

data from
P

O app process may be
slow at reading from
buffer

Transport Layer 18

TCP Flow control: how it works

J— RevWindow —}

O Rcvr advertises spare
application - '0OM by including value

I

data from Z
IP e ™ of ReviWindow in
2 segments
ol 0 Sender limits unACKed
(Suppose TCP receiver data o RevWindow
discards out-of-order O guarantees receive
segments) buffer doesn't overflow
0 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 19

