
1

�����

�����	
�����������

Marghoob Mohiyuddin

�
�����

� Review of network performance metrics
� ns-2
� ns-2 demo

����
������������������������ �

���� �����

� Understanding network behavior
� Improving protocols
� Verifying correctness of implementation
� Detecting faults
� Monitor service level agreements
� Choosing provider
� Billing

!����������

� Link bandwidth (capacity): maximum rate (in bps) at
which the sender can send data along the link

� Propagation delay: time it takes the signal to travel
from source to destination

� Packet transmission time: time it takes the sender to
transmit all bits of the packet

� Queuing delay: time the packet need to wait before
being transmitted because the queue was not empty
when it arrived

� Processing Time: time it takes a router/switch to
process the packet header, manage memory, etc

!����������

� Throughput of a connection or link = total
number of bits successfully transmitted
during some period [t, t + T) divided by T

� Link utilization = throughput of the link / link
rate

!����������

� Delay (Latency) of bit (packet, file) from A to B
� The time required for bit (packet, file) to go from A to B

� Jitter
� Variability in delay

� Round-Trip Time (RTT)
� Two-way delay from sender to receiver and back

� Bandwidth-Delay product
� Product of bandwidth and delay � “storage” capacity of

network

2

�������������������������

� Network-centric metrics
� Reliability, queue lengths, load, etc
� Network service providers try to provide best

possible service to an aggregate of traffic flows

� End-user centric metrics
� Throughput, packet loss, etc
� Users concerned about the performance of

specific applications

����������������������

� Robustness of network elements
� Mean Time to Failure (MTF), Mean Time to Repair (MTR)
� Designing components of a network

� Router and switch metrics
� Offered load

� Should be handled by the network element
� Dropped traffic

� Effectiveness of the router/switch
� Average queue lengths

� Queue management when queue large
� Link metrics

� Link bandwidth
� Routing sub-system metrics

� Route stability
� Excessive fluctuations can lead to connectivity problems

��	�
�����������������

� End-to-end latency and jitter
� Jitter – variation in delay

� Can help identify congestion in the path

� Effective throughput
� Packet loss

� Application throughput decreases with increasing
packet loss

� ��
��������"��#
��

� Measurements
� gather data from a real network
� e.g., ping www.berkeley.edu
� realistic, specific

� Simulations: run a program that pretends to be a
real network
� e.g., NS network simulator, Nachos OS simulator

� Models, analysis
� write some equations from which we can derive

conclusions
� general, may not be realistic

� Usually use combination of methods

�
�����

� Review of network performance metrics
� ns-2
� ns-2 demo

$"��������%

� Discrete event network simulator
� Models network protocols

� Wired, wireless, satellite
� TCP, UDP, multicast, unicast
� Web, telnet, FTP
� Ad-hoc routing, sensor networks
� Infrastructure – stats, tracing, error models

� Multiple levels of detail in one simulator

3

$"&���
����%

� To examine protocol in controlled
environment

� Repeatable experiments
� Alternatives

� Experimentation: operation details, but limited
scale, limited flexibility

� Analysis: can provide deeper understanding, but
ignores implementation details

��������������

� ns – Network Simulator
� Executes Tcl scripts containing simulation setup and

events
� nam – Network AniMator

� Visualize ns output
� xgraph – graph plotter

� Plot ns output

Tcl script ns-2 Sim.
results

Analyze

nam

!�������� ������
������

� Model world as events
� Maintain queue of events, ordered by time
� Main virtual (simulated) time
� Repeat

� Extract event at head, set virtual time to event’s time
� Process it
� If processing generates another event, then add it to queue

� Each event takes predefined amount of virtual time,
arbitrary amount of real time
� Slow CPU makes simulation run slower (in real time), but

does not change result

!�������� ����'�����

� Assuming a simple
queue model

� Event at t=1
� A enqueues packet on

the LAN
� Generates event at t=1.1

� Event at t=1.1
� LAN dequeues packet

and triggers B

A B

A and B two nodes on an ethernet

������	���

� Traffic models and applications
� web, FTP, telnet, constant-bit rate

� Transport protocols:
� unicast: TCP (Reno, Vegas, etc.), UDP
� multicast: SRM

� Routing and queueing:
� wired routing, ad hoc routing and directed diffusion
� queueing protocols: drop-tail, RED, fair queueing, etc.

� Physical media:
� wired (point-to-point, LANs), wireless (multiple propagation

models), satellite

���������������
��
��

� C++ for packet processing
� Simulator code

� Library of network and protocol objects
� Can add new protocols

� oTcl for control
� oTcl – Object Tcl (Tool Command Language)
� User’s command scripts

� Network topology, protocols, applications
� Simulation output specification

� In this course, project only requires writing the oTcl
part!

4

�(��� �� ���

� Programming language
used to setup
simulation environment
� Object-oriented
� Interpreted

� Used for
� Setting up topology
� Placing events
� Injecting events
� Tracing events

� variables
� set x 10
� puts “x is $x”

� expressions
� set y [pow x 2]
� set y [expr x+x*3]

� control
� if ($x>0) { return $x } else

{ return [expr -$x] }
� while ($x >0) { puts $x

set x [eval x+1] }

�(��� �� ���

� Assign values: set x 0
� Use values: set x $y
� Mathematical expression: expr $x+$x*2
� Nested commands: set x [expr $y+2]
� Printing: puts “hello $x”
� File operations: set file1 [open filename w]
� Control:

� if {$k < 5} {puts “$k < 5”} else {puts “$k >= 5”}
� for {set i 0} {$i < 5} {incr i} { <commands> }

� Procedures: procedure arg1 arg2
� Methods: $object method arg1 arg2
� Comments start with a ‘#’

�'�����)�(��������������������

proc fact {x} {
set ret 1
if {$x > 2} {

for {set i 1} {$i <= $x} {incr i} {
set ret [expr $i * $ret]

}
}
puts “factorial of $x is $ret”

}
fact 5 � factorial of 5 is 120

*�������
��
�������������

� Creating the event scheduler
� [Tracing]
� Creating network topology
� Creating Transport Layer - Agents
� Creating Applications - Applications
� Events!

+�������� �����"�	
���

� Create scheduler
� set ns [new Simulator]

� Schedule event
� $ns at <time> <event>
� <event>: any legitimate ns/tcl commands

� Start scheduler
� $ns run

Creates new simulator object
store this in the var. ns

�,����$���	� ������

� helloworld.tcl:
� set ns [new Simulator]

$ns at 1 “puts \“Hello World!\””
$ns at 1.5 “exit”
$ns run

� c199% ns helloworld.tcl
� c199%Hello World!

Create a simulator, put in var ns

Schedule event ‘print HelloWorld
at time t=1

Run the simulator executing events

Execute the script

5

+��������������

� Node creation
� set n0 [$ns node]

set n1 [$ns node]
� Can also set node color: $n0 color black

� Links & Queuing
� $ns simplex-link $n0 $n1 <bandwidth> <delay>

<queue_type>
� $ns duplex-link $n0 $n1 <bandwidth> <delay>

<queue_type>
� Queue type: DropTail, RED, CBQ, FQ, SFQ, DRR
� $ns duplex-link $n0 $n1 1Mb 10ms DropTail
� $ns queue-limit $n0 $n1 20

!����������������&��� ������

� UDP
� Source

� set udp0 [new Agent/UDP]

� Sink
� set null [new Agent/NULL]

� Connect to nodes
� $ns attach-agent $n0 $udp0
� $ns attach-agent $n1 $null

� Connect together
� $ns connect $udp0 $null

!����������������&��� ������

� TCP
� Source

� set tcp0 [new Agent/TCP]

� Sink
� set sink0 [new Agent/TCPSink]

� Connect to nodes
� $ns attach-agent $n0 $tcp0
� $ns attach-agent $n1 $sink0

� Connect source and sink
� $ns connect $tcp0 $sink0

!�������������������

� Creating traffic on top of TCP
� FTP

� set ftp [new Application/FTP]
� $ftp attach-agent $tcp
� $ns at <time> “$ftp start”

� Telnet
� set telnet [new Application/Telnet]
� $telnet attach-agent $tcp

�'�����

n0 n1 n2

tcp-sinktcp

ftp

4 Mbps, 10ms 1 Mbps, 10ms

�'�����

1. Create the simulator
� set ns [new simulator]

2. Set Up Network Topology
� set n0 [$ns node]
� set n1 [$ns node]
� set n2 [$ns node]

3. Define Traffic Patterns
� $ns duplex-link $n0 $n1 4Mb 10ms DropTail
� $ns duplex-link $n2 $n1 1Mb 10ms DropTail
� $ns queue-limit $n1 $n2 10

n0 n1 n2
4 Mbps, 10ms 1 Mbps, 10ms

6

�'�����

4. Define Agents
� #Create a TCP agent and attach it to node n0
� set tcp0 [new Agent/TCP]
� $ns attach-agent $n0 $tcp0
� #Create a TCP sink agent and attach it to node n2
� set sink [new Agent/TCPSink]
� $ns attach-agent $n2 $sink
� #Connect both agents
� $ns connect $tcp0 $sink
� #Create an FTP source
� set ftp [new Application/FTP]
� $ftp set maxpkts_ 1000
� $ftp attach-agent $tcp0

n0 n1 n2

tcp-sinktcp
ftp

4 Mbps, 10ms 1 Mbps, 10ms

�'�����

5. Schedule Simulation Events
$ns at 0.0 "$ftp start“
$ns at 10.0 "$ftp stop“
$ns at 10.1 "finish“

6. Run the simulation
$ns run

�'�����

#Create a simulator object
set ns [new Simulator]
#Create three nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
#Create link between the nodes
$ns duplex-link $n0 $n1 4Mb 10ms DropTail
$ns duplex-link $n2 $n1 1Mb 10ms DropTail
$ns queue-limit $n1 $n2 10
#Create a TCP agent and attach it to node n0
set tcp0 [new Agent/TCP]
$ns attach-agent $n0 $tcp0
#Create a TCP sink agent and attach it to

node n2
set sink [new Agent/TCPSink]
$ns attach-agent $n2 $sink

#Connect both agents
$ns connect $tcp0 $sink
create an FTP source
set ftp [new Application/FTP]
$ftp set maxpkts_ 1000
$ftp attach-agent $tcp0
#Inject starting events
$ns at 0.0 "$ftp start"
$ns at 10.0 "$ftp stop"
$ns at 10.1 "finish"
#Run the simulation
$ns run

+���������������

� Tracing all packets on all links
� set trace_file [open out.tr w]
� $ns trace-all $trace_file
� $ns flush-trace
� close $trace_file

� Tracing packets on a specific link
� ns trace-queue $node0 $node1 $trace_file

(����������� �'�����

fid is IPv6 flow identifier

-���&.��������
��
�

� Unix tools
� awk

� Simple processing of data files – summing up a column,
averaging, etc.

� grep
� Filter a file

� perl
� Processing and filtering

� Plotting tools like xgraph, gnuplot to plot the
relevant statistics

7

��� �� ��
���.����
��
�

� Collecting traces for nam
� set nf [open out.nam w]
� $ns namtrace-all $nf

� Visualizing the trace
� nam out.nam

��� 	���
#Create a simulator object
set ns [new Simulator]
open the nam trace file
set nam_trace_fd [open tcp_tahoe.nam w]
$ns namtrace-all $nam_trace_fd
define a 'finish' procedure
proc finish {} {

global ns nam_trace_fd trace_fd
close the nam trace file
$ns flush-trace
close $nam_trace_fd
execute nam on the trace file
exit 0

}
#Create three nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
#Create link between the nodes
$ns duplex-link $n0 $n1 4Mb 10ms DropTail
$ns duplex-link $n2 $n1 1Mb 10ms DropTail
$ns queue-limit $n1 $n2 10

#Create a TCP agent and attach it to node n0
set tcp0 [new Agent/TCP]
$ns attach-agent $n0 $tcp0
#Create a TCP sink agent and attach it to

node n2
set sink [new Agent/TCPSink]
$ns attach-agent $n2 $sink
#Connect both agents
$ns connect $tcp0 $sink
create an FTP source
set ftp [new Application/FTP]
$ftp set maxpkts_ 1000
$ftp attach-agent $tcp0
#Inject starting events
$ns at 0.0 "$ftp start"
$ns at 10.0 "$ftp stop"
$ns at 10.1 "finish"
#Run the simulation
$ns run

(���

� ns-2 man pages
� Lot of details omitted in the presentation

� Working oTcl code as a template
� Verify topology!

� nam might be helpful

/���������

� NS by example
� http://nile.wpi.edu/NS/

� Marc Greis’s tutorial
� http://www.isi.edu/nsnam/ns/tutorial/index.html

� EE122, Fall 2005 slides on ns
� http://inst.eecs.berkeley.edu/~ee122/fa05/projects

/Project2/NS2005.pdf
� Official NS manual

� http://www.isi.edu/nsnam/ns/ns-
documentation.html

��	���"��0

1
�������%

