
1

An Overview of
Network Security

Vern Paxson

International Computer Science Institute /

Lawrence Berkeley National Laboratory /

EECS, UC Berkeley

vern@icsi.berkeley.edu / vern@ee.lbl.gov

April 18, 2006

Security Dimensions

� General notion: network security = ensuring that
a network is used as desired/intended

� Authentication: who is this actor?
� Attacker counterpart: spoofing

� Authorization: is this actor allowed to do what
they request?
� Attacker counterpart: compromise

� Accountability/Attribution: who did this activity?
� Attacker counterpart: framing (not discussed today)

Security Dimensions, con’t

� Integrity: does a message arrive in its original form?
� Protections are cryptographic (not discussed today)

� Confidentiality: is communication free from
eavesdropping?
� Same: cryptographic protections (not discussed today)

� Attacker counterpart: sniffing, man-in-the-middle

� Availability: can you use the network / a service when
you want to?
� Attacker counterpart: Denial-of-Service (DoS), theft-of-service

� Audit/forensics: what occurred in the past?

� Abuse: misuse that doesn’t violate the rules (e.g., spam)

Network Security Themes

� Much of the field has evolved in an ad hoc manner

� Security is about policy, not about bullet-proofing

� Much of the effort concerns “raising the bar” and trading off
resources

� Threat model: what you are defending against
� E.g., UCB: SB1386 personal identity information disclosure

� E.g., LBL: embarrassing newspaper articles � DC $$$

� Networks connect disparate parties

� They have different notions of policy and threat models

� Crucial to keep in mind domains of trust, responsibility, control

� Many will not cooperate unless it’s in their business interest

Network Security Themes, con’t

� Network use is always more diverse than you expect
� Zillions of applications/services

� Rife with weird/broken traffic (“crud”)

� Rife with “background radiation” (incessant probing for vuln.)

� Breadth of diversity increases with size of user base

� Exacerbates the problem of “false positives”

� The problem is fundamentally adversarial
� This can radically change system design considerations …

� … but keep in mind “raising the bar” and threat model
vs. bullet-proofing

� Major challenge of manageability
� Complex policies + churn + false positives + zillions of devices +

“bolt-on” mechanisms + innovating attackers = HUGE challenges

Who Are The Bad Guys,
Historically?

� Vandals/juveniles:
� In it for showing off, kicks

� Often can catch break-ins because they set up IRC servers

� Historically, hugely deriviative (“script kiddies”) with
slow pace of innovation

� Historically, very prevalent in over-the-network
attacks, viruses

� Insiders
� Already have some form of site access

� Powerful & feared

� Historically, under-reported

� Threat includes “exfiltration” of sensitive information

2

Who Are The Bad Guys,
Today?

� (Not: terrorists, political protesters)

� Espionage
� Theft of information for commercial / national gain

� Militaries
� Very hard to gauge, but clearly an area of activity

� Our study of a “worse case” worm attack launched by
a nation state yielded defensible $50B+ damages

� Crooks …

3

Who Are The Bad Guys,
Today?

� (Not: terrorists, political protesters)

� Espionage
� Theft of information for commercial / national gain

� Militaries
� Very hard to gauge, but clearly an area of activity

� Our study of a “worse case” worm attack launched by
a nation state yielded defensible $50B+ damages

� Crooks
� Very worrisome trend in attackers figuring out how to

make money with network attacks

� Fuels innovation and specialization, driving an
economy

Authentication:
Who is this Actor?

� Notion is absent from Internet architecture
� It ensures that packets go to their destination addresses …

� … but not that they came from their source addresses

� Yet, absent an alternative, much authorization is based on
source address

� What can an attacker achieve by spoofing a source
address?
� Denial-of-service floods that

� Can’t be attributed to the machine sending them

� Can’t be filtered based on their source

� Impersonation of other machines
� Tear-down established connections via TCP RSTs

� Establish connections if can guess TCP Initial Sequence Number

� Devious stealth-scanning that looks like it comes from someone else

Authentication, con’t

� Defense: deploy network filters that discard packets
coming from topologically “impossible” addresses

� E.g., LBL border router

� discards outbound packets w/ sources not in 128.3/16 or 131.243/16

� discards inbound packets w/ these sources

� Note: doesn’t prevent spoofing inside the site

� Note: doesn’t prevent external hosts spoofing non-internal-LBL
sources

� Such filtering is fairly widely - but not globally - deployed

Authentication, con’t

� Even if operating within a filtered site, attacker can still
hide by spoofing other addresses within the site …
� … and might even be able to pick up replies sent back to the

spoofed source if can monitor some of the site’s traffic

� Defenses against spoofing TCP sequence numbers
� Randomize initial sequence numbers

� Require tight agreement for RST sequence numbers

� Principle: ensure a large search space

Social Engineering: Confusing
Humans Regarding Authentication

� Attacks on DNS names
� E.g., register www.gooogle.com

� Now passively wait for someone to mistype …

� … and feed them whatever fake Google experience you wish

� Attacks on DNS reverse lookups
� E.g., you receive a packet from 1.2.3.4. Who is that?

� If you look up the corresponding hostname, you really are
querying 4.3.2.1.in-addr.arpa.

� Whoever controls the corresponding name server can return
whatever they like.

� Suppose this name server is at 1.2.3.10, and an attacker has
compromised both 1.2.3.4 and 1.2.3.10.

� Then the answer returned might well be www.google.com

Social Engineering, con’t

� Powerful technique for targeted attacks
� E.g., find out the name and mailstop of one of a company’s

system administrators …

� … mail out a CD of a trojaned system image to a company
employee with a note that it contains an important security
update.

� Employee trusts the source of the update, applies it, and now you
have a backdoor of arbitrary design into the company

� Attacks like this are well known to often work

� More generally, the (very big) problem of phishing is an
instance of ongoing social engineering attacks.

� General defense: user education :-(

� Phishing-specific defenses: active area for startups

4

Authorization: Is This Actor Allowed
To Do What They Request?

� Much authorization is based on looking up identity in an
access control list (ACL).
� Hence, strength hinges on strength of authentication technology

� Firewalls: inline authorization enforcement mechanism
� Can allow/disallow traffic based on IP addresses (“white lists”

and “black lists”)

� Can allow/disallow traffic based on TCP/UDP port numbers

� Latter assumes can service the service associated with
a connection from the port number used by the server
� Increasingly this is no longer the case

� Adversarial applications: e.g., file-sharing, Skype

� Use of tunneling to encapsulate one protocol within another

Authorization Without Identity

� Capabilities: objects that convey authorization to do something by
their very possession

� E.g., car keys
� Possession enables operation of the car, regardless of identity

� Capabilities can be delegated

� It’s (very) hard to create the capability by guessing

� You can make different ones with related but different properties (e.g.,
key starts the car and will/won’t open the trunk)

� Capabilities can be copied

� Example from a network security context:
� http://www.icir.org/vern/tmp/ is an unlistable directory

� If you know the full URL to an item in it, you can access it

� But you likely can’t guess it

� However, for network security main interesting uses are hypothetical
� We will revisit this when discussing denial-of-service defenses

Authorization Without Identity, con’t

� Network Access Control: you’re only allowed to connect
to a network if you demonstrate good security hygiene
� E.g., when you try to access a wireless network, the access point

scans you or contacts a server previously installed on your laptop
or PDA

� Scan must reveal up-to-date security patches, sound local
access configuration, policy compliance

� Highly appealing as it addresses “loss of the perimeter”,
i.e., that sites can no longer rely on controlling access to
their resources by controlling their Internet link

� Lots of vendor buzz
� Cisco: “Network Admission Control”

� Microsoft: “Network Access Protection”

Circumventing Authorization

� Major means of undermining authorization is
compromise: tricking a host into executing on your
behalf.

� We can think about these in terms of what is attacked
(server or client) and the semantic level at which it is
attacked

� Attacks on servers: client sends subversive requests
� Happens at attacker’s choosing

� Attacks on clients: server (attacker) waits for client to
connect, sends it subversive replies
� Perhaps server “chums” to entice clients to visit (e.g., claiming to

have popular pirated content)

Semantic Level of Compromise

� Buffer overflows
� Part of the request sent by the attacker too large to fit

into buffer server uses to hold it.

� Spills over into memory beyond the buffer

� Can alter corresponding program state, particularly
� Return address associated with current function call

� Change this to branch into other overwritten memory,
executing the attacker’s code

� Large class of attacks, with a variety of defenses
� Host-based: randomized layouts, detection of overwritten

memory, execution of network payload, impossible call stacks

� Network-based: signatures, semantic analysis, post-attack
activity

� Violates semantics of underlying programming
language

Semantic Level
of Compromise, con’t

� Logic errors
� E.g., suppose your Web server passes any argument

named “rev” in a URL request to a backend script
called munch via the equivalent of

sh munch $rev

where $rev is the URL argument, returning its output

• Now suppose you receive the following request:
GET /bin/TWikiUsers?rev=2%20|more%20/etc/passwd

which decodes to
$rev = “2 |more /etc/passwd”

5

Logic Errors, con’t

� Your script is invoked as
sh munch 2 |more /etc/passwd

which returns as output the password file.

• “Cross-site scripting attack”

• Similar “SQL injection” attacks when backend is instead
a database

• Morris Worm (1988) exploits a similar logic error: when
sendmail’s debug mode is enabled, then can specify
command server should execute to receive next piece of
mail. Command chosen: equivalent of “download and
execute the worm”.

Semantic Level
of Compromise, con’t

• Logic errors:
• Note: no violation of programming language

semantics!

⇒ Very hard to detect. Need to understand intended
semantics.

• Similar problems occur any time executable content is
allowed
• E.g., Web plug-ins, document macros

• Higher semantic level still: social engineering
• E.g., “I love you” virus (2000), est. damage: > $10B

Automated Compromise: Worms

• When attacker compromises a host, they can
instruct it to do whatever they want

• Instructing it to find more vulnerable hosts to
repeat the process creates a worm: a program
that self-replicates across a network

• As the worm repeatedly replicates, it grows
exponentially fast because each copy of the
worm works in parallel to find more victims

• Often spread by picking 32-bit Internet
addresses at random to probe …
• … but this isn’t fundamental

Automated Compromise:
Worms, con’t

• Thanks to Internet’s tendency to monocultures,
victim populations can be Very Large
• Morris Worm (1988): no reliable estimate of size, but

significant enough to land on front page of NY Times

• Code Red 1 (2001): 360,000 hosts
• Got them in about 10 hours

• Slammer (2003): 75,000 hosts
• Got them in about 10 minutes

• Blaster (2003): > 8,500,000 hosts
• Poorly designed spreading strategy took many days

Automated Compromise:
Worms, con’t

• Theoretical worms could do a Lot Better Still
• Much more efficient scanning for victims

• Makes the worm both faster and stealthier

• Passive infection (“contagion”) that generates no extra
network traffic

• Much nastier payloads (e.g., wipe disk, rewrite BIOS,
introduce errors into spreadsheets, mail out files)

• Much faster propagation still (in theory, 1M hosts in
~ 2 seconds)

Automated Compromise:
Worms, con’t

• A lot of work on defenses:
• Detecting scanning, superfluous communication,

replicated packet contents, host compromises that
cause subsequent network traffic

• Honeypots - hosts deliberately deployed to get
attacked

• Big worms are flashy but rare …

• … Perhaps because with the commercialization
of malware, the tool of choice has shifted to the
less noisy, more directly controlled botnets

6

Automated Compromise: Bots

• When host is (automatically) compromised, don’t
continue propagation, but instead install a
“command and control” platform (a bot)

• Note, can use a worm to get bots, can use a
botnet to launch worms (or scan for more bots)

• Now can monetize malware by selling access to
the bots
• Spamming, phishing web sites, flooding attacks

• “Crook’s Google Desktop”: sell capability of searching
the contents of 100,000s of hosts

Network Detection Of Attacks

� Far and away, most traffic travels across the Internet
unencrypted.

� Communication is layered with higher layers
corresponding to greater semantic content.

� The entire communication between two hosts can be
reassembled: individual packets (e.g., TCP/IP
headers), application connections (TCP byte streams),
user sessions (Web surfing).

� You can do this in real-time.

Tapping links, con’t:

� Appealing because it’s cheap and gives broad
coverage.

� You can have multiple boxes watching the same
traffic.

� Generally (not always) undetectable.

� Can also provide insight into a site’s general
network use.

Problems
With Passive Monitoring

� Reactive, not proactive
� However, this is changing w/ intrusion prevention systems

� Assumes network-oriented (often “external”) threat
model.

� For high-speed links, monitor may not keep up.

� Depending on “vantage point”, sometimes you see only
one side of a conversation (especially inside backbone).

� Against a skilled opponent, there is a fundamental
problem of evasion: confusing / manipulating the
monitor.

Styles of Intrusion Detection —
Signature-Based:

� Core idea: look for specific, known attacks.

� Example:
alert tcp $EXTERNAL_NET any -> $HOME_NET

139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"

msg:"EXPLOIT x86 linux samba overflow"

reference:bugtraq,1816

reference:cve,CVE-1999-0811

classtype:attempted-admin

Signature-Based, con’t:

� Can be at different semantic layers, e.g.: IP/TCP
header fields; packet payload; URLs.
� Higher semantic levels yield more detection power &

greater ability to avoid false positives (e.g., checking
replies to requests).

� Pro: good attack libraries, easy to understand
results.

� Con: unable to detect new attacks, or even just
variants. Low-level sigs prone to false positives.

7

Styles of Intrusion Detection —
Anomaly-Detection

� Core idea: attacks are peculiar.

� Approach: build profile of “normal” use, flag deviations.

� E.g.: “user joe only logs in from host A, usually at night.”

� Note: works best for narrowly-defined entities
� Though sometimes there’s a sweet spot, e.g., content sifting or

scan detection

� Pro: can detect wide range of attacks, including novel.

� Con: can miss wide range of attacks, including known.

� Con: can be “trained” to accept attacks as normal.

Styles of Intrusion Detection —
Specification-Based

� Core idea: codify a specification of what a site’s policy
permits; look for patterns of activity that deviate.

� E.g.: “user joe is only allowed to log in from host A.”

� Pro: can detect wide range of attacks, including novel.

� Pro: can accommodate signatures, anomalies.

� Pro: directly supports implementing a site’s policy.

� Con: policies/specifications require significant
development & maintenance.

� Con: hard to construct attack libraries.

A Stitch in Time:
Prevention Instead of Detection

� Big win to not just detect an attack, but block it

� However: Big lose to block legitimate traffic

� Mechanisms:

� NIDS spoofs connection tear-down/denial messages

� NIDS contacts firewall/router, requests block (race condition)

� NIDS is in-line and itself drops offending traffic (no race, but
performance and robustness issues)

� Increasing trend in industry …

� … but requires highly accurate algorithms

The Problem of Evasion

� Consider the following attack URL:

http://…./c/winnt/system32/cmd.exe?/c+dir

� Easy enough to scan for (e.g., “cmd.exe”), right?

� But what about

http://…./c/winnt/system32/cm%64.exe?/c+dir

� Okay, we need to handle % escapes.

� But what about

http://…./c/winnt/system32/cm%25%54%52.exe?/c+dir

� Oops. Will server double-expand escapes … or not?

The Problem of Evasion, con’t

� There are many such ambiguities

� At the network layer: will this packet arrive at the receiver?

� At the transport layer: for this inconsistent retransmission,
will the receiver take the first version of the second?

� At the application layer: how will this corner-case in the
spec be interpreted? Will the spec be honored?

� Problem is fundamentally hard

� Can’t reliably alarm on presence of ambiguity due to
prevalence of “crud” in real traffic

� Most promising approach: normalization

� Rewrite traffic inline to scrub out ambiguities

Denial-of-Service (DoS)

� Attacker’s benefit is indirect: inconveniencing the
victim, perhaps very seriously

� Some motives:

� Retaliation (particularly among script kiddie attackers)

� Commercial advantage

� Extortion (e.g., threatening to target Internet gambling
sites during times of heavy betting; or ecommerce
sites during holidays)

� Abetting an accompanying direct attack (e.g., DoS on
an intrusion detection system)

8

Denial-of-Service (DoS), con’t

� Can be very hard to defend against
� Particularly if attacker can muster a large army of

zombies (a “botnet”)

� Basic mechanisms
� “Single packet”: exploit bug that crashes server

� “Flooding”: overwhelm an element with too much
traffic

� Flooding can occur at different layers:
� Network: prevent traffic from reaching server

� Server: overtax server to prevent it from having
resources to tend to legitimate requests

DoS: Network Flooding

� Goal is to clog network link(s) leading to victim

� Either fill the link, or overwhelm their routers

� Attacker sends spoofed traffic to victim as fast
as possible

� Using multiple hosts (“slaves”) yields a
Distributed Denial-of-Service attack, aka DDOS

� Traffic is varied (sources, destinations, ports,
length) so no simple filter matches it

Network Flooding: Traceback

� How do we find the sources of a spoofed flood?
� Approach #1: add marks to all packets as they

traverse the network, analyze the marks at the victim
to find the sources
� Can work with remarkably small marks (a few bits), leveraging

the large volume of marks received at victim

� Approach #2: routers remember every packet seen
� Remarkably, this is doable using clever data structures (Bloom

filters) and large-but-not-humongous state for a memory of 10s
of seconds

� Approach #3: ISPs monitor their edge routers, find
where flood enters their network, phone up the peer
sending it to them, repeat

Network Flooding: Traceback

� Of these approaches, only #3 (ISPs contacting
one another) is used in practice

� Why? Because finding the source isn’t useful
� What will you do with the information?

� Getting it turned off requires a lot of leg work; completely
impractical if there are 1000s of sources

� Finding the source never reveals the person behind the attack,
because they launder their tracks through a series of
machines (“stepping stones”), making attribution infeasible

� On the other hand, finding ingress into a network
is useful, since it facilitates installing upstream
filters to ameliorate the flood

Network Flooding: Defenses

� Hop-count filtering
� Idea: TTL field in IP packets reflects the hop count of traffic at a

given point.
� E.g., if packet sent with TTL=127, then at a point 12 hops along

the path (say, near the victim’s server) it will = 115.

� Remember TTL values seen for different IP addresses

� When under stress, drop all packets that differ from remembered
TTL, or that don’t have an entry

� Pros:
� Hard for attacker to guess correct TTL value, so many of their

packets discarded

� Cons:
� Requires a lot of state to remember previous values

� Doesn’t protect new legit sources, or traffic w/ routing changes

� Only reduces attacker’s flood, doesn’t eliminate it

9

Network Flooding: Defenses

� Capabilities
� Idea: routers give priority to packets that carry special markings,

which the sender can only get from the receiver.

� If the receiver likes a connection, it sends the markings and that
connection receives priority from the network. Otherwise, it
doesn’t, and traffic continues at low priority.

� Pros:
� Provides “opt in” protection for good guys rather than “opt out”

filtering of bad guys.

� Cons:
� Bootstrap problem of how to get capability in the first place (since

initial request lacks priority)

� Requires significant infrastructure

Network Flooding: Defenses

� Other defenses
� Overlays: spread access to the service across many

locations, so flooding them all takes much greater
resources

� Distribution: spread the service itself across many
locations

� Pushback: routers that detect a stressed link signal
next upstream hop to rate limit; messages recursively
propagate towards sources

� Overprovisioning: fat enough pipes that it’s hard for
an attacker to fill them.
� This turns the problem into service flooding

Service Flooding: Defenses

� SYN cookies: server avoids creating any state
for a new connection until client completes SYN
handshake
� Done by encoding all initial state in the SYN ACK

sequence number that the client must echo

� Flooders that spoof source addresses never receive
SYN ACK so can’t complete handshake and consume
server resources

� Puzzles: server requires client to prove it has
conducted some significant computation before
accepting request
� Idea: level the playing field between legit clients and

flooders by limiting each to a slow rate of requests

Service Flooding: Defenses

� CAPTCHAs
� Idea: “Reverse Turing Test”

� Prove that a client is a human rather than a machine

� Based on known-hard AI problems that humans solve
readily

� Drawbacks:
� If visual, discriminates against blind users

� Depending on the problem, an arms race …

Network Security Summary

� Very wide range of problems/issues spanning
essentially every facet of networking

� Key considerations:
� Dealing with an adversary / arms race

� This is getting much more serious now that attackers can
make money

� Security has a major policy component
� Vital to consider threat model, trading off resources

� Architecture lacks support for fundamental notions
such as authentication, authorization, accountability
� Security bolted on post facto lacks coherence

10

Authentication Technology

� IP ⇒ IPSEC
� Layer between IP header and transport header

� Can provide authentication, confidentiality, integrity

� Management of crypto keys a big headache

� Also difficult to secure communication between parties who don’t
know each other (e.g., public Internet services)

� DNS ⇒ DNSSEC
� Adds signing of DNS data to authenticate who provided it

� Includes mechanisms for key distribution

� Management remains a significant headache

� Pesky problem of DNS replies now can exceed 512-byte limit

Authentication Technology, con’t

� Telnet, Rlogin ⇒ SSH
� Connection negotiates crypto session key based on public key

exchange, encrypts all subsequent traffic

� Pointwise deployment model that involves parties who know one
another has led to success

� HTTP ⇒ SSL, TLS (standardized version)
• Model similar to SSH

• Usually, only the server authenticates to the client, not vice versa

• This plus browsers containing built-in public keys from which they
can establish third-party trust in server’s key leads to deployment
success

• Routing: BGP ⇒ SBGP? Work in progress …

