EE 123 (Fall 2006) Digital Signal Processing

Discussion: 3

Z-transform and LCCDE

 $GSI:\ Chuohao\ Yeo$

Date: Sep $11/Sep \ 13$

1 Z-transform and ROC

- Finite length sequence
- Right-handed sequence

2 Linear Constant Coefficient Difference Equations

• Example: y[n] = ay[n-1] + x[n]

• Solving LCCDE

• Initial Rest Conditions \Rightarrow LTI + Causal

In general, we have:

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$$

First, let's consider a causal input x[n], such that $x[n] = 0 \forall n < n_0$. Initial rest conditions imply that we will set the output $y[n] = 0 \forall n_0 - N \le n \le n_0 - 1$. Then, the resulting system is causal, since for $n < n_0, y[n] = 0$ and for $n \ge n_0, y[n]$ only depends on past values of input, and past values of output, which themselves only depend on past values of input.

Time-invariance follows easily as well. Let's consider x'[n] = x[n-D]. Now, from above, we have:

$$y[n-D] = \sum_{k=1}^{N} a_k y[n-D-k] + \sum_{k=0}^{M} b_k x[n-D-k]$$

$$\Rightarrow y'[n] = \sum_{k=1}^{N} a_k y'[n-k] + \sum_{k=0}^{M} b_k x'[n-k]$$

where y'[n] = y[n - D]. Therefore, y'[n] is a solution for the original difference equation, and is also the unique solution that satisfies the initial rest conditions.

Assume that $x_1[n]$ and $x_2[n]$ are causal signals, such that $x_i[n] = 0 \forall n < n_i$. Without loss of generality, assume $n_1 < n_2$. Let $y_i[n]$ be the unique solution for the input $x_i[n]$ satisfying the initial rest conditions. Then, we see that:

$$c_1 y_1[n] + c_2 y_2[n] = c_1 \left(\sum_{k=1}^N a_k y_1[n-k] + \sum_{k=0}^M b_k x[n-k] \right) + c_2 \left(\sum_{k=1}^N a_k y_1[n-k] + \sum_{k=0}^M b_k x[n-k] \right)$$
$$= \sum_{k=1}^N a_k \left(c_1 y_1[n-k] + c_2 y_2[n-k] \right) + \sum_{k=0}^M b_k \left(c_1 x_1[n-k] + c_2 x_2[n-k] \right)$$

Hence, $c_1y_1[n] + c_2y_2[n]$ is a solution for the difference equation with $c_1x_1[n] + c_2x_2[n]$ as input. Furthermore, it is the unique solution that satisfies the initial rest conditions, since on their own, $y_i[n] = 0 \forall n < n_i$, and so, under our assumption that $n_1 < n_2$, $c_1y_1[n] + c_2y_2[n] = 0 \forall n < n_1$.

In conclusion, a LCCDE with initial rest conditions gives us a causal and LTI system.