Z-transform and LCCDE

1 Z-transform and ROC

- Finite length sequence
- Right-handed sequence

2 Linear Constant Coefficient Difference Equations

- Example: $y[n]=a y[n-1]+x[n]$
- Solving LCCDE
- Initial Rest Conditions \Rightarrow LTI + Causal

In general, we have:

$$
y[n]=\sum_{k=1}^{N} a_{k} y[n-k]+\sum_{k=0}^{M} b_{k} x[n-k]
$$

First, let's consider a causal input $x[n]$, such that $x[n]=0 \forall n<n_{0}$. Initial rest conditions imply that we will set the output $y[n]=0 \forall n_{0}-N \leq n \leq n_{0}-1$. Then, the resulting system is causal, since for $n<n_{0}, y[n]=0$ and for $n \geq n_{0}, y[n]$ only depends on past values of input, and past values of output, which themselves only depend on past values of input.

Time-invariance follows easily as well. Let's consider $x^{\prime}[n]=x[n-D]$. Now, from above, we have:

$$
\begin{aligned}
y[n-D] & =\sum_{k=1}^{N} a_{k} y[n-D-k]+\sum_{k=0}^{M} b_{k} x[n-D-k] \\
\Rightarrow y^{\prime}[n] & =\sum_{k=1}^{N} a_{k} y^{\prime}[n-k]+\sum_{k=0}^{M} b_{k} x^{\prime}[n-k]
\end{aligned}
$$

where $y^{\prime}[n]=y[n-D]$. Therefore, $y^{\prime}[n]$ is a solution for the original difference equation, and is also the unique solution that satisfies the initial rest conditions.

Assume that $x_{1}[n]$ and $x_{2}[n]$ are causal signals, such that $x_{i}[n]=0 \forall n<n_{i}$. Without loss of generality, assume $n_{1}<n_{2}$. Let $y_{i}[n]$ be the unique solution for the input $x_{i}[n]$ satisfying the initial rest conditions. Then, we see that:

$$
\begin{aligned}
c_{1} y_{1}[n]+c_{2} y_{2}[n] & =c_{1}\left(\sum_{k=1}^{N} a_{k} y_{1}[n-k]+\sum_{k=0}^{M} b_{k} x[n-k]\right)+c_{2}\left(\sum_{k=1}^{N} a_{k} y_{1}[n-k]+\sum_{k=0}^{M} b_{k} x[n-k]\right) \\
& =\sum_{k=1}^{N} a_{k}\left(c_{1} y_{1}[n-k]+c_{2} y_{2}[n-k]\right)+\sum_{k=0}^{M} b_{k}\left(c_{1} x_{1}[n-k]+c_{2} x_{2}[n-k]\right)
\end{aligned}
$$

Hence, $c_{1} y_{1}[n]+c_{2} y_{2}[n]$ is a solution for the difference equation with $c_{1} x_{1}[n]+c_{2} x_{2}[n]$ as input. Furthermore, it is the unique solution that satisfies the initial rest conditions, since on their own, $y_{i}[n]=0 \forall n<n_{i}$, and so, under our assumption that $n_{1}<n_{2}, c_{1} y_{1}[n]+c_{2} y_{2}[n]=0 \forall n<n_{1}$.
In conclusion, a LCCDE with initial rest conditions gives us a causal and LTI system.

