University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE123: DIGITAL SIGNAL PROCESSING

Fall 2006

Discussion #8

Suppose \$\tilde{x}[n]\$ is a periodic sequence with period N. Then \$\tilde{x}[n]\$ is also periodic with period 3N. Let \$\tilde{X}[k]\$ denote the DFS coefficients of \$\tilde{x}[n]\$ considered as a periodic sequence with period N, and let \$\tilde{X}_3[k]\$ denote the DFS coefficients of \$\tilde{x}[n]\$ considered as a periodic sequence with period 3N. Express \$\tilde{X}_3[k]\$ in terms of \$\tilde{X}[k]\$.

2) The figure below shows two periodic sequences, $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$, with period N=7.

a. Find a sequence $\tilde{y}_1[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_1[n]$ and the DFS of $\tilde{x}_2[n]$, i.e. $\tilde{Y}_1[k] = \tilde{X}_1[k]\tilde{X}_2[k]$.

ŝ

o

10

15

3) Consider the real finite-length sequence x[n] shown below.

-5

-<u>10</u>

a. Sketch the finite-length sequence y[n] whose six-point DFT is $Y[k] = W_6^{4k} X[k]$, where X[k] is the six-point DFT of x[n].

- b. Sketch the finite-length sequence w[n] whose six-point DFT is $W[k] = \operatorname{Re}\{X[k]\}$.
- c. Sketch the finite-length sequence q[n] whose three-point DFT is Q[k]=X[2k], k=0,1,2.