University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE123: DIGITAL SIGNAL PROCESSING

Fall 2006

Discussion \#8

1) Suppose $\tilde{x}[n]$ is a periodic sequence with period N. Then $\tilde{x}[n]$ is also periodic with period $3 N$. Let $\tilde{X}[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period N, and let $\tilde{X}_{3}[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period $3 N$. Express $\tilde{X}_{3}[k]$ in terms of $\tilde{X}[k]$.
2) The figure below shows two periodic sequences, $\tilde{x}_{1}[n]$ and $\tilde{x}_{2}[n]$, with period $N=7$.

a. Find a sequence $\tilde{y}_{1}[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_{1}[n]$ and the DFS of $\tilde{x}_{2}[n]$, i.e. $\tilde{Y}_{1}[k]=\tilde{X}_{1}[k] \tilde{X}_{2}[k]$.
b. The figure below shoes a periodic sequence $\tilde{x}_{3}[n]$ with period $N=7$. Find a sequence $\tilde{y}_{2}[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_{1}[n]$ and the DFS of $\tilde{x}_{3}[n]$, i.e. $\tilde{Y}_{2}[k]=\tilde{X}_{1}[k] \tilde{X}_{3}[k]$.

3) Consider the real finite-length sequence $x[n]$ shown below.

a. Sketch the finite-length sequence $y[n]$ whose six-point DFT is $Y[k]=W_{6}^{4 k} X[k]$, where $X[k]$ is the six-point DFT of $x[n]$.
b. Sketch the finite-length sequence $w[n]$ whose six-point DFT is $W[k]=\operatorname{Re}\{X[k]\}$.
c. Sketch the finite-length sequence $q[n]$ whose three-point DFT is $Q[k]=X[2 k], k=0,1,2$.
