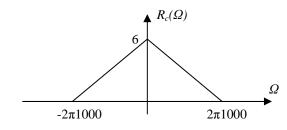
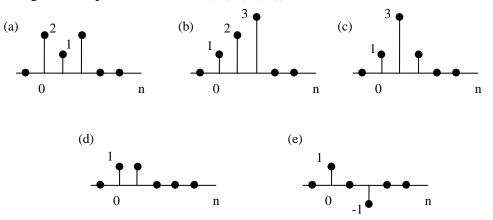

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE123: DIGITAL SIGNAL PROCESSING


Fall 2006

Discussion #12

1. Consider the following system:


Assume that $R_c(\Omega)$ is band-limited as shown below.

- (a) Sketch $R(\omega)$ and $X(\omega)$.
- (b) Choose nonzero values for ω_0 and T_2 such that $y[n] = \alpha r_c(nT_2)$ for some non-zero α .
- (c) Using the value of ω_0 found in (b), determine a choice for T_3 such that $s_c(t) = \beta r_c(t)$ for some nonzero β .

2. Location of zeros for Type I/II/III/IV FIR Linear-Phase Filters

3. Consider the each of the following filters and determine whether it is a generalized linear-phase filter, i.e. $H(\omega)=A(\omega)e^{-j\alpha\omega+j\beta}$ with $A(\omega)$, α and β real. If so, determine $A(\omega)$, α and β . In addition, if you determine that it is a generalized linear-phase filter, indicate whether it also meets the more stringent criterion of being a linear-phase filter, i.e. $H(\omega)=/H(\omega)/e^{-j\alpha\omega}$.

