University of California, Berkeley Department of Electrical Engineering and Computer Sciences

EE123: DIGITAL SIGNAL PROCESSING

Fall 2006

Discussion #15

1. The even part of a real sequence x[n] is defined by

$$x_e[n] = \frac{x[n] + x[-n]}{2}$$

Suppose that x[n] is a real finite-length sequence defined such that x[n]=0 for n<0 and $n\ge N$. Let X[k] denote the N-point DFT of x[n].

- (a) Is $Re\{X[k]\}\$ the DFT of $x_e[n]$?
- (b) What is the inverse DFT of $Re\{X[k]\}$ in terms of x[n]?
- 2. Suppose that x[n] is an infinite-length, stable (i.e. absolutely summable) sequence with z-transform given by:

$$X(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$$

Suppose that y[n] is a finite-length sequence of length N, and the N-point DFT of y[n] is:

$$Y[k] = X(z)\Big|_{z=\exp(j2\pi k/N)}, \qquad k = 0,1,...,N-1$$

Determine y[n].

3. Consider an infinite duration sequence x[n], which is non-zero for all n. We wish to filter x[n] with the impulse response h[n]. The sequence h[n] is a finite duration sequence that is zero outside $0 \le n \le 200$. The filtered signal is denoted by y[n] and is given by y[n] = x[n] *h[n]. Suppose we wish to determine y[n] for $0 \le n \le N-1$.

To do this, a student obtained x[n] for $0 \le n \le N-1$, extended it to the left with 200 zeros, and performed a N+200 point circular convolution of the extended segment of x[n] with h[n]. The student then eliminated the first 200 points of the results and claimed that the remained is y[n] for $0 \le n \le N-1$.

Is the student correct? If the student is incorrect, what portion of y[n] can we get from the result of the circular convolution?

4. Suppose that a finite-length sequence x[n] has the N-point DFT X[k], and suppose that the sequence satisfies the symmetry condition:

$$x[n] = -x[((n+N/2))_N], \quad 0 \le n \le N-1$$

where N is even and x[n] is complex.

- (a) Show that X/k = 0 for k = 0, 2, ..., N-2.
- (b) Show how to compute the odd-indexed DFT values X[k], k=1,3,...,N-1 using only one N/2-point DFT plus a small amount of extra computation.
- 5. Consider the system shown in the figure below.

The input to this system is the bandlimited signal whose Fourier transform is shown below with $\Omega_0 = \pi/T$.

- (a) Sketch the Fourier transform $X(\omega)$, $X_e(\omega)$, $Y_e(\omega)$, and $Y_c(\Omega)$.
- (b) For the general case when $X_c(\Omega)=0$ for $|\Omega| \ge \pi/T$, express $Y_c(\Omega)$ in terms of $X_c(\Omega)$. Also, give a general expression for $y_c(t)$ in terms of $x_c(t)$ when $x_c(t)$ is band-limited in this manner.
- 6. The system function G(z) represents a type II FIR generalized linear-phase system with impulse response g[n]. This system is cascaded with an LTI system whose system function is $(1-z^{-1})$ to produce a third system with system function H(z) and impulse response h[n]. Prove that the overall system is a generalized linear-phase system, and determine what type of linear phase system it is.

7. Suppose we wish to design a highpass linear phase FIR filter h[n] using the window method with the following specifications:

$$|H(\omega)| \le \delta_s, \qquad |\omega| \le \omega_s$$

$$1 - \delta_p \le |H(\omega)| \le 1 + \delta_p, \quad \omega_p \le |\omega| \le \pi$$
where $\omega_s = 0.3\pi$, $\omega_p = 0.45\pi$, $\delta_s = 0.04$ and $\delta_p = 0.01$.

Note the table below of properties for various windows:

Window	Peak Amplitude of Side Lobe (dB)	Approximate Width of Main Lobe	Peak Approximation Error (dB)
Rectangular	-13	$4\pi/N$	-21
Bartlett	-25	8π/N	-25
Hanning	-31	8π/N	-44
Hamming	-41	8π/N	-53
Blackman	-57	$12\pi/N$	-74

- (a) Suppose we can use either Bartlett or Hamming windows. Which type of window would you choose? Why?
- (b) Using the window w[n] you chose in part (a), what is a reasonable initial choice of the window length N? Let $H_d(\omega)$ be the DTFT of the ideal filter $h_d[n]$, where $h[n] = h_d[n]w[n]$. Determine $H_d(\omega)$ for $-\pi \le \omega \le \pi$.
- (c) Suppose that you can use the Kaiser window. Determine a reasonable initial choice of parameters (i.e. shape β , and filter length M). Determine the corresponding ideal response $H'_d(\omega)$ for $-\pi \le \omega \le \pi$.

You are given the following optimal FIR lowpass filter design problem:

Given
$$\delta_1 = 2\delta$$
, $\delta_2 = \delta$, $\omega_p = \frac{\pi}{4}$, $\omega_s = \frac{3\pi}{4}$, and N (the length of the filter), minimize δ

On the next page, the magnitude of the frequency response of four filters $|H_i(\omega)|$, $i=1,\ldots,4$ is shown. Let N_i represent the length of the impulse response $h_i(n)$ of the filter $H_i(\omega)$, i.e., $h_i(n)$ is nonzero only for $0 \le n \le N_i - 1$. Assume N_i is odd and $h_i(n) = h_i(N_i - 1 - n)$

For each frequency response, determine whether it could have been generated by the Parks-McClellan algorithm. Justify your reasoning and determine the possible values of N_i for each filter $h_i(n)$ that could have been generated by the Parks-McClellan algorithm.

