SIGNAL PROCESSING AND ITS APPLICATIONS

AVIDEH ZAKHOR

GENERAL OVERVIEW OF SIGNAL PROCESSING

- Digital vs analog vs discrete time.
- Theoretical vs applied.
- Algorithm development vs implementations.
- Applications:
 - 1. Telecommunications.
 - 2. Audio
 - 3. Speech
 - 4. Analog to digital conversion
 - 5. Video
 - 6. Images
 - 7. Radar
 - 8. Sonar
 - 9. Biomedical
 - 10. Geophysical

IMAGE PROCESSING

- Image enhancement → dynamic range/histogram modifications.
- Image restoration → debluring due to motion or being out of focus.
- Image reconstruction from partial information:
 - 1. Fourier transform phase.
 - 2. Fourier transform magnitude.
 - 3. Projection \rightarrow projection slice theorem.
- Image compression for communications, storage, entertainment, etc. ..

VIDEO SIGNAL PROCESSING

- Implementation: VLSI architectures need to be resolved for real time operation.
- Algorithmic issues → Compression strategies:
 - 1. What to quantize:
 - Space domain information: pixels.
 - Frequency domain information: DCT or DFT.
 - Predictive coding: DPCM.
 - 2. How to quantize:
 - Uniform
 - Max Loyd.
 - 3. How to allocate bits:
 - Entropy coding.
 - Arithmetic coding.
 - Hoffman coding.
- Motion Estimation:
 - Reduce redundancy \rightarrow compression.
 - Frame interpolation \rightarrow rate conversion.
 - Enhancement.

- Present research topics:
 - HDTV.
 - Video conferencing.
 - Compact disc \rightarrow 1.5 Mb/sec.
 - Video communications over digital networks.

SPEECH

- Problems in speech:
 - 1. Analysis and Synthesis.
 - 2. Voiced/unvoiced discrimination, pitch detection.
 - 3. Coding \rightarrow LPC coding, pole zero modeling.
 - 4. Speech recognition
 - Speaker dependent vs independent.
 - Connected words vs isolated words.
 - Vocabulary size.
 - Extensive training.
 - Error rate
 - Applications of AI for context dependent recognition.

AUDIO

- Problems in audio:
 - 1. Generation of signals \rightarrow music synthesis.
 - 2. Storage and Transmission of signals \rightarrow tapes, compact disc players.
 - 3. Restoration of old signals \rightarrow Caruso's operas.
 - 4. Faithful reproduction of signals in the form of acoustic wave \rightarrow Speaker design.
 - 5. Adding reverb.
 - 6. Echo removal.
 - 7. Adaptive cancellation for room/car acoustics.
 - 8. Precise analog to digital converter design \rightarrow Sigma delta converters.

TELECOMMUNICATION

5

- Digital versun analog message source.
- Modulation techniques \rightarrow AM vs FM vs PM.
- Error Correction Codes:
 - Block Codes.
 - Convolutional Codes.
- Compensation for channel nonidealities:
 - Atmospheric Fading.
 - Distortion \rightarrow Adaptive equalization.
- Viterbi Decoding:
 - -ISI.
 - CPM.
 - Convolutional decoding.

BIOMEDICAL APPLICATION

- Ultra sound.
- Magnetic Resonance Imaging.
- PET.
- X ray Tomography:
 - Projection slice theorem.
 - Application to other tomography problems such as NDE, radar, geophysics.
 - Limited angle tomography.

RADAR.

- Principle of operation:
 - Estimate range by measuing time delay \rightarrow short pulses.
 - Estimate doppler by measuring frequency of the received signal → Continuous wave such as sinuosid.
 - Tradeoff between range and doppler resolution.
 - Time compression waveforms. \rightarrow matched filtering.
- High resolution Radar Imaging:
 - $-SAR \rightarrow Optical Fourier Transform.$
 - -ISAR.

SONAR

- Similar to radar except for operating frequency and passive mode of operation.
- delay and direction of arrival estimation.
- Adaptive beamforming.
- Adaptive nulling to combat unwanted interference.

GEOPHYSICS

- Applications: Geology, Oil/mineral exploration.
- Signal processing techniques used: DECON-VOLUTION: predictive, dynamic homomorphic.

IMPLEMENTATION ISSUES

- Fixed point versus floating point arithmetic.
- Accumulation of round off errors.
- Filter design and implementation: FIR versus IIR.
- Stability and robustness of algorithms.

ANALOG VERSUS DIGITAL

- Analog signal processing can handle up to 8 bits of accuracy.
- Advantages of digital:
 - Robustness with respect to aging and temperature.
 - Added flexibility.
- Which one is more appropriate for what?