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1 Motivation

Signal Processors love bandlimited Signals...
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Then :

Wm

{f(nT)},nUZ, T = Ww,

Is a sufficient representation, since

f(t) = Z f(nT)sinc(t/T—n)
ntlZz

where

sin(Ttt)

sinc(t) = -

| [—TT, 1]

(1)
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Motivation(2)

But what if
LS RS
SN N (\ /. z K:
7T~ N v, —~ w

just one discontinuity and no more sampling theorem...

Often, one does not have access to the signal itself, but
to a measurement

A () A (W
T T T T T Measuring -

P

device t

N

| t

Sampling FRI- 4



Motivation(3)

"Optical” ® o
Telescope [

Can we sample such signals that we see through an im-
perfect measuring device?

There are many parametric signals which are far from
bandlimited

AG)

Y

b

Note: rate of transition is finite, given by the chip rate
symbol rate much slower
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Motivation (4)
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2 Signals of Finite Rate of Innovation

What is so special about a signal f(t) bandlimited
to [-w 0] ?

With a sampling interval of T = /wthe signal f(t) is
specified by

pP=1/T = w,/T

degrees of freedom per unit of time. By the interpolation
formula (1), any bandlimited signal can be generated as

EAR * /\TA \/\/,
: \/ V

vt N/ N~y
> nez f(nT)o(t —nT) sinc(t/T) ft)=()

I
~N
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Signals of finite [(2)

Definition: The number of degrees of freedom per unit of
time is called the rate of innovation .p

Rate of innovation

« Assume a class of signals having a parametric represen-
tation

Consider one signal x from the class
Call C,(t5t1) the number of degrees of freedom in

Then

p = Ilim 1C It L0

xJ2 2l

T 0l

If p<o, we call x a signal of finite rate of innovation
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Signals of finite P(3)

1NN

to t1 ts ... ... t

Interarrival times: i.i.d. , pdf ue_”t
Expected interarrival time: 1/u

{t.} Is a sufficient description of a realization

_ 1 _
P = Eint. tme)

v
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Aquisition Model, Notation

>, 0(t—nT)

where X(t): signal
h(t): sampling kernel
y(t): filtered version of x(t)
y,: samples
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Natural questions

Signals of finite (5)

1. What are interesting classes of signals with finite P

2. For which of these classes can we find unique representa-
tions through sampling (in particular uniformly) that is:

x — h(t) Sampling

— Yy, = h({t-nT), x()U

such that X =Y,
just like in the bandlimited case
3. What are good kernels  h(t)?
4. What are the algorithms to find

X(om Y3
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“Classic”, subspace case. Given known fct P (t)

x®) = Y cncp%—ng

. ENN|
Space: Span %H)DT_”DE
This is a well studied case (sampling, non-uniform
sampling, reconstruction). It is a linear problem.

[~Wis W] &(t) = sinc(y)

z(T)

] @(t)
Basis: Ex: //\/

Basis: #(1) Ex: #0)
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[

2.Arbitrary shifts, known  ¢¢) x(t) = Z q)DT_—T 0

ntZz

This is not a subspace!

t3
NN T

periodic non-uniform spline (deg. 1)
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Arbitrary shifts, set of known fcts ¢:. ()
R

i—T ]
x(t) = Cpp ="
n%Z rZ:O el

A

//\

t to ts I_
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The 4 cases of interest:
1 Periodic signal

infinite kernel o ho)
f T T B AVAN as
| - DA
2 Finite signal (1) "
infinite kernel ‘
? T . AN N\
| ; =
3 Infinite signal z(t) ht)
finite kernel ‘ T ‘
el Lo N
v ¢
_— . x(t) o
4 Infinite signal
Infinite kernel T T
H N .
v ' DA I

Note: 1, 2 and 3 lead to finite dimensional problems
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Fourier series

3 The periodic case

| ; T
j2rimt
x(t) = z X[m]e T

mLlZ
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3.A Periodic “stream” of Diracs

K Diracs per T:

2K degrees of freedom p = ETE
K—1 K-1 4 j2rm(t—t,)
x(t) = Z cpo(t—t,) = Z Z cké(t—tk—nr) = z Ck? Z e T
nJZ nUJZ k=0 k=0 m LIZ
1K—1 —j2mimt,
= = T
or X[m] TkZocke mOZ

T 0
A X[m] is a weighted sum of Kexponentials % [
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Consider: "

10
A(z) = 5 Almlz "= %*1 0
m=0 ]

[]
k=0 []

by
=

Now, note that . . . .
—) 21t )21t —2mt,  —j4mnt,

1 ' J00..e ' L, ' e ' ,..]

Is zero, from which follows that A[m]LX[m] = 0

Equivalently, in time domain
—j2n(t —t)
—_e 1

K-1

a(t) = A(z)

Dq_mm

O
_jzmk k=0 []
z=e !

has zeros at t =1t k =0,..,K=1 thus a(t) Ix(t) = 0

A(z) is called an annihilating filter, since it “kills” x(t)
ECC: error locator polynomial
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Theorem 1: Consider a periodic stream of K Diracs, of period
T, weights {c,} and locations {t,}. Take a sampling kernel

hg(t) = Bsinc(Bt) sinc= |[-mm]  where B = >p

Pick N=2K+1and T =1t/N Then
Yo = D1B(t—nT),x(t)D, n==~0.. N=-1

iIs a sufficient characterization of x(t).
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Proof
1.y, is a sufficient characterization of X[m] m = -K...K
Either use Poisson ZA[m]z_r]n or graphically:

ot U, Tt

2. Finding A[m]s.t. A[m]LX[m] = 0 A[O] = 1 solve for
m = 1...K. This leads to a Toeplitz system, e.g. K =3

x[o] x[-1] X[-2]||A[1)]  [x[a]
X[1] X[0] X[-1]||A[2]] = —|x[2]
X[2] X[1] X[O]]|A[3]  [X[3]

Classic Yule-Walker system

Unique solution for distinct Dirac locations
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K-1

3. Factorisation of A(z) A(z) =[] (1—ukz_1)
k=0
—j2mt,

where U, = T, thus {1}

K—1
= is found
€ k=0
4. Finding the weights ¢,

Given {t .}, Kvalues of X[k]are given,

for ex. for K=3 B 10
X[0] . 1 1 1 Co
_ Lluqu,u
X[1]| = - 0-172 ¢,
X[2] ug ui ug C,

which is a Vandermonde system, having always a solu-
tion given distinct  tg.
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Interpretation

The projection of x(tpnto the lowpass space BL[_KTZH, KTZH}
IS one-to-one for a periodic stream of K Diracs
Corollary 1 : GivenA[m], m = 0...K and X[m], = —-K...K one
can recover the entire spectrum as
K
X[m] = —Z A[K]IX[m—=k] ,m = K+1...
k=1

Proof: left to the reader

Notes: 1. annihilating filter known in sinusoidal retrieval from noise

2. same filter used in error correction coding, and called error locator polyn

3. recursive spectrum extrapolation known as Berlekamp-Massey algo. in ECC
2,3 over finite fields...
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3.B Non-uniform splines

| (1)
AN
to

MV

periodic non-uniform spline (deg. 1)

i

A signal x(t)is a perioKdic non-uniform spline of degree R
with Kknots at {tk}k:O Iff its (R+1)“’derivative IS peri-
odic of the form )

X (1) = Z Cm6(t—tm)
mLUZ

t +T

where tm+k =1,

Clearly, the Fourier series satisfy
(R+1) _ fjemmf*1 «
X[m] © = g=—qg  X[m] (*)

Thus _
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Theorem 2 : Consider a periodic non-uniform spline of max
degree R and period 1. Take hB(t) as sampling kernel, with

_ 2K +1
T

N =2K+1

Zl-

B and T =

Then Y = [hB(t—nT),x(t)D n=0.N-1

uniquely defines x(t).

R+1
Proof: similar to Thm 1 to get X[m]JThen X[(m]+ )follows

from (*), to which we apply Thm 1. X[(Ol added at the
end
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3.C Derivatives of Diracs

ROR If(t)é(r)(t—to)dt = (-1 1 (t)
where fis frtimes differentiable

Then a periodic stream of differentiated Diracs is

i (1)
_ r
x(t) = Z Z cmré (t—t,)
mUZ r=0
. K-1
There are: Klocations, K = Z Ryveights.
y k=0
Thus: p = K+K
T
It can be verified that:
K_1 R,—1 —j2mmt,

1

= ﬂZmﬂﬂ T
Uk

X[m] = Z Z CkrD_T Ik
=0 r=0
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The annihilating filter now requires multiples zeros, since

-1,R L R-1 k
(1-uz 7) annihilates m u,. Thus A(z)pecomes

K-1

-1 Ry
A(z) = |‘| (1-uz )
k=0

Then: Alm]UX[m] = O, therefore, one can show:
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Theorem 3: Consider a periodic stream of differentiated
Diracs as above. Take as sampling kernel h,(t) = Bsinc(pt)
with B = p+ 1/t and sample hBSx at N points t = nt/N where
n=0.N-1and N=K+K+1. Then

y, = [hB%_n.IL.EX(t)D n=0.N-1
Is a sufficient characterization of x(t).

Proof: Similarly to Thm 1, we first get X[rhjom .y
Then we solve for the location  {t.} A[m]EX[m] = and fi-

nally for the coefficients {c,,}
The latter calls for a generalized Vandermonde system

which is non-singular for ti;ttj 1 Z£]
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3.D Piecewise Polynomials
A z(t)

11 4

I =~

t() tl T

A periodic piecewise polynomlal x(wyith |d(eces of de-
gree max Rhas an (R+1) thyerivative which is a stream
of differentiated Diracs, or

X(t) = Z mz_ Cmré(r)(t—tm)

mUZ r=0

There are: Klocations, K = (R +1)Kweights

_ (R+2)K
T Sampling FRI- 31



Then:

Theorem 4: A signal defined by its derivatives as in (**) can
be recovered after convolution by h,(t), where B = p+1/1
and sampling at t = nt/N with N = (E{+2)K+1, that is

_ 10 = —
y, = [hB%_nNDX(t)D n=0..N-1
uniquely specifies x(t)

Proof: left to the reader, along Theorem 1, 2 and 3.
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4 Finite Length Signals

‘?WTz

| * -

A finite length signal with finite gbearly has a finite # of
degrees of freedom.

The question of interest is:

given a sampling kernel with a infinite support (like the sinc or
the gaussian), is there a finite set of samples that uniquely spec-
ifies the signal?
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4.1 Gaussian Kernel

Consider the same signal as in (4.1), now using a

gaussian kernel

L

h(t) — e—tz/(202)

AN

T‘ 2T

Then, the sample values are

Yn

0 F 202
D((t),emr nD/(ZG)D

K-1 dk n%z/ ( 202)
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Expanding (4.1) 2 nt, 2

Y = %CkeTZZO'Z [eTZGZ [9202 (4.2)

Introduce i

2
= T20
Y, =€ by,

Thus
n
—ti O 4 O
Y = C eT2202 DEETZGZE
: %EI Ooo O [l
ay [] []
DDDFD
Uy
K-1 n
Y, = Z a, Uy (4.4)
k=0

that is ... a linear combination of exponentials!
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Therefore, use the usual method of the good old
annihilating filter

A*Y =0

and factor it such as to find {uk}k:o...K—l

From Uy, and tkand Kvalues of Y,nwe can solve
for c . in (4.2). Thus
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Theorem 5: Given a finite stream of K Diracs and a gaussian
2 2
kernel h(t) = e*7(29) then N samples

Y, = X(), h%]i_ —n%]

where N = 2K, are sufficient to reconstruct the signal.
Note: Similar remarks as for Theorem 3...
But: Here, unlike in the sinc case, we have an “almost lo-

cal” reconstruction because of the exponential decay of
h(t) !
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4.2 Sinc kernel (Thierry’s tour de force)

Consider a finite sequence of spikes
K-1
x(t) = kz C,d(t—t,) (4.5)

and a kernel sinc(t/T) o/ s

o EPRARC

The samples y, = [x(1), sinch—n%]are

K1 mt, /T
Z Cksmcﬂ—lf—n - (- 1) z c, sin(Tt, /T) (4.6)
K=0 d-‘f—nD
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Introduce the following interpolators

K-1
P(u) = |‘| d—k—u Z pku , deg. K
k:O
k
P/(u) = L ,deg. K-1
| kl;llmT :

Then, consider the following
K-1
n 1 :
Y, = (1) P(n)y(n) = - > Cysin((mt, )/ T)P, (n) (4.7)
k=0
Y = A[C

Now (key insight!) Y s of degree K-Thus
AKYn =0 n=K.N-1 (4.8)
Vip=0 N-K=>K

Note: ~Aksimilar to annihilating filter
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So, as long as N-K=z=K one can use (4.4) to solve for P,
from y_. This leads to {tgty, ....te 4}

Using this in (4.6) allows to solve for {c,Fhus:
Theorem 6: Given a finite stream of K Diracs and a sinc(t/T)
: t
kernel, N samples y_. = [X(t), sinces —n where
n LT %]nzo...N—l

N > 2K, are sufficient to reconstruct the signal.

Note: the result does not depend on T! of course, it shows
up in the conditionning of linear system!!

' Wi ———
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The steps to reconstruct the signal are

1. Solve a linear system KxK
{yi} - {p} i =0..K=-1(p, =1)

2. Factor
P(u) - {ti} 1 =0...K-1

3. Solve linear system - {c}

This method can be extended to piecewise polynomials,
similarly to Theorem 4.

Also, there is an obvious equivalent for discrete-time sig-
nals from I,(Z)and discrete-time sinc kernels.
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Sinc Kernel, finite length signals

19 T T T T T T T

18|

17r

number
=
[=2]
T

(I
ol
T

Iog10 condition

[N
~
T

13f

12 I I I I I I I
0 0.25 05 0.75 1 125 15 175 2
T

Conditioning on location

20

181

161

[N
~
T

Iog10 (condition number)

—
)
T

[N
(=3
T

=)
T

1 1 1 1 1 1 1

0.25 05 0.75 1 125 15 175 2
T

Conditioning on weights

Sampling FRI- 43



5. Applications

We show 2 direct applications of the results shown above.

5.1 Piecewise Bandlimited Signals
Consider a signal that is the sum
X = Xg T Xpp
where xg  is bandlimited and Xpps piecewise polynomial.

Assume Xxg, Is specified by its frequency component
Xg LKkl , KU[-M,M] while xpphas 2Kdegrees of freedom.
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Then, consider the spectrum of X[k] kO[-M-2K, M + 2K]

b

—M - 2K —-M

First, using X[k], kO[M+1, M +2K] and the technique of
Proposition 1 or Theorem 1, we can recover XppUub-
stracting Xpgrom Xwe can then recover Xg,
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Piecewise Bandlimited Signal
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Thus:

Proposition 3 : Given a piecewise BL signal of length N, with
2M + 2K degrees of freedom. Pick Q a divisor of N and
®[n] = IDTFS(I[-2K—M, M + 2K]).
Then
yll] = X[n], ¢[n-1Q]JL;,.
uniquely specify x[n] if

N oM +2K

2Q

The proof follows from earlier results with adjustements .
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5.2 Filtered Piecewise Polynomials

Consider a stream of KDiracs convolved with a known fil-

ter g(t)
et e WD

— | t

-
o

Thus: x(t) = g(t)=d(t)
where gis known and d(t) = z a;0(t—t,)
|

Clearly, if g[n] « G[k]is invertible over 2Krequency val-
ues, then we can use Proposition 1.
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Stream of Diracs Filtered stream of Diracs Filter
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In particular:

Propositon 4 : Assume x[n] with K Diracs and a filter G[k] #0,
k O[-K,K]. The signal we observe is x[n]xg[n].

Using ¢[n] = IDTFS(I_y ;) and M such that N Sk M a divi-

sor of N 2M

Then

yll] = IX[n], ¢[n—-IM]LC

Is a sufficient representation of x[n].

A more difficult case appears when g[m$ unknown but of
finite p...
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6 Multidimensional Case

2D Poisson: KDiracs on RZ/T

Various approaches
e non separability is the key!
« X[my, m,], mi‘ <K is sufficient 0O O(KZ) samples
« X[my, my], ml‘sK is sufficient O O(K) samples

--> 2D root finding (...) or spectral extrapolation

Extension:
* lines
e simples objects

Goal: #samples ~ #deg. of freedom of object
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Example of a 2D gaussian kernel:

Gaussian sampling kernel

Finite set of M=17 weighted Diracs

Reconstructed signal

Convolution with the sampling kernel

70

i
i

i
il
il

(R
Y
A
R
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2D methods based on projections

Radon Transform

f(x,y) = F(8,1)

What about “finite complexity” objects?
[1 Projections are finite rate of innovation!
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Result: Set of K Diracs can be perfectly reconstrucded
from K+1 bandlimited projections with 2K samples

See [Maravic] ICASSP-2002
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7 Communications Applications

Many communication systems use wideband signalling

CDMA: chip rate >> symbol rate

| :

| i
-
T K512 chins T

UWAB: pulse position modulation

| -

| T ot

In both cases
rate of innovation << bandwidth

But: Noise !
Solution: oversample
subspace methods, SVD
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7.1 Solving for sinusoids in noise

Idea: Solve for “longer” filter:

 %(0) x(<1) ... x(-M)|| @1 L x(1) |
M+1xM+1 x(1) x(0) a
X(2) I
X(M) .. X(0) | ay 1 X(M +1)
using 2M+1 samples > 2K oversample

Now: The noiseless Toeplitz matrix has rank K (# of sinusoids)
with A =

. . T
where a, = | -IoM JoM
' e . 1
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we can write the Toeplitz matrix as

T=A0U

where N is the noise Toeplitz matrix

Thus: If the sinusoids dominate the noise (M large
enough), a K-dimensional subspace idendifies the sinu-
soids

Then:
1. Compute SVD of T
2. Approximate by K largest singular value: ToT
3. Solve Ta = xon subspace
4. Find roots closest to U.C.
[0 best approximation of sinusoids
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Note:

« Many alternative available

« well studied problem
e time versus correlation domain
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7.2 Multiuser Communication

Direct Sequence Code Division Mult. Access (DS-CDMA)

Model:
- User i has a signature sequence S
- each bit is spread into this signature

=X L1

{u }»@—» S, channel

Clearly: rate of innovation is symbol rate

Usually: sampling done at chip rate or faster

Now: chip rate 10 %-103> symbole rate! (e.g. L=511)
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But: - multiaccess scheme
- multipath environment

Multiaccess: signature are orthogonal
Multipath: small number of dominant pulses

User i: pi(t) = Z B.o(t— 1)

Two phases
1. Channel estimation:
Using training sequences, {pi(l)}i — 4 }|<s estimated

2. Detection:
Based on the channel estimate, various detectors
(e.g. MMSE) can be applied

Question: For a digital receiver,
Should one run:
- channel estimation
- detection
at symbol rate or chip rate?
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{U1} ’(: — Si - P Detect.1 —
{Uz}»@—> S, - Py jDetect.l —
Chann.
est.
{UK}4><: —1 Sk - Px Detect.K |
K Users Signatures Channels MAC Chann. Est.  Detection
SiDSj
analog
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Degrees of freedom

Channels:
- K users
- P multiple paths

But: users can use training sequences of length K
Result:

Solving K linear systems of O(M) with M= 2P
Is sufficient for channel estimation
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7.3 Ultrawideband communications

Very low signal to noise ratio (-15 dB)

Used for communications in unlicensed spectrum
and for ranging applications

Bandwidth: several GHz
Very difficult to design digital receivers

Transmitted sequence of UWB pulses & Received signal
T T

0.025

0.02

0.015

0.01

0.005 |

o

—0.005
—0.01 ‘

—0.015

—0.02 L L L I I
o 2000 4000 6000 8000 10000 12000
t

Results:
Finding one dominant eigenvalue can be sufficient !
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8 Conclusions

We have seen:;

« Many signals that look “unsampleable” actually can be
sampled at their rate of innovation!

« Methods: give me an exponential and | will annihil%te it!
o Structured linear systems with fast algorithms O(K")
« Can be generalized (rotational, 2D)

But: There are many more signals with finite rate of inno-
vation

Conjecture: They can be sampled at or above their rate
of innovation!
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Outlook

« Many other parametric classes are of interest
(piecewise trigonom.)

 Often, there is a “low degree of freedom” explanation
* This is not necessarily a subspace (e.g. manifold)

« “Super-resolution” signal processing for appropriate
models (channels, images, etc...) has great potential

Occam’s Razor for sampling!
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