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Lecture 5

based on slides by J.M. Kahn
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Info

• Last time
– Finished DTFT Ch. 2
– z-Transforms Ch. 3

• Today: DFT Ch. 8

• Reminders:
– HW Due tonight



The effects of sampling

What is going on here?

https://www.youtube.com/watch?v=bzjwnZDScxo
Rolling shutter effect
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Motivation: Discrete Fourier Transform

• Sampled Representation in time and 
frequency
– Numerical Fourier Analysis requires discrete 

representation
– But, sampling in one domain corresponds to 

periodicity in the other...
– What about DFS (DFT)? 

• Periodic in “time”  ✓
• Periodic in “Frequency” ✓

– What about non-periodic signals?
• Still use DFS(T), but need special considerations
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CFS

Which transform? (Time-domain)

Time Frequency
Periodic  Discrete
Discrete  Periodic 

Sometimes we use this
for aperiodic signals, though!
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Motivation: Discrete Fourier Transform

• Efficient Implementations exist
– Direct evaluation of DFT: O(N2)
– Fast Fourier Transform (FFT): O(N log N)

(ch. 9, next topic....)

– Efficient libraries exist: FFTW
• In Python:
> X = np.fft.fft(x);
> x = np.fft.ifft(X);

– Convolution can be implemented efficiently 
using FFT
• Direct convolution: O(N2)
• FFT-based convolution: O(N log N)
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Discrete Fourier Series (DFS)
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Discrete Fourier Series (DFS)

• Define:

• DFS:

Properties of WNkn?
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Discrete Fourier Series (DFS)

• Properties of WN:
– WN0 = WNN = WN2N=...=1
– WNk+r = WNKWNr or, WNk+N = WNk

• Example: WNkn (N=6)
k=1

n=1n=2

n=3

n=4
n=5

n=0,6

k=2

n=1,4,7,

n=2,5, n=0,3,6,
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Discrete Fourier Transform

• By Convention, work with one period:

Same same..... but different!
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Discrete Fourier Transform

Inverse DFT, synthesis

DFT, analysis

• It is understood that, 
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Discrete Fourier Transform

• Alternative formulation (not in book)
Orthonormal DFT:

Inverse DFT, synthesis

DFT, analysis

Why use this or the other?
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Comparison between DFS/DFT

DFS

DFT
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Example

0 1 2 3 4

1

• Take N=5

“5-point DFT”
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Example

A:                       where        is a period-10 seq.

“10-point DFT”
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Example

• Show:

“10-point DFT”

4
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DFT vs DTFT

• For finite sequences of length N:
– The N-point DFT of x[n] is:

–The DTFT of x[n] is:

What is similar?
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DFT vs DTFT

• The DFT are samples of the DTFT at N 
equally spaced frequencies
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DFT vs DTFT

• Back to moving average example:

w
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FFTSHIFT

• Note that k=0 is w=0 frequency
• Use fftshift to shift the spectrum so w=0 in 

the middle. 
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DFT and Inverse DFT

• Both computed similarly.....let’s play:

• Also....
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DFT and Inverse DFT

• So, 

or, 

• Implement IDFT by:
– Take complex conjugate
– Take DFT
– Multiply by 1/N
– Take complex conjugate ! Why useful?
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DFT as Matrix Operator

DFT:

IDFT:

straightforward implementation requires N2 complex multiplies :-(
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DFT as Matrix Operator

• Can write compactly as:

• So, 

as expected.
WHY?
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Properties of DFT

• Inherited from DFS (EE120/20) so no 
need to be proved

• Linearity

• Circular Time Shift
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Circular shift
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Properties of DFT

• Circular frequency shift

• Complex Conjugation

• Conjugate Symmetry for Real Signals

Show....
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Examples 

• 4-point DFT
–Basis functions?
–Symmetry

• 5-point DFT
–Basis functions?
–Symmetry



Cool DSP: Phase Vocoder, used in autotune

https://www.youtube.com/watch?v=6fTh0WRJoX4

Changes the frequency and time domains of audio signals, while
still accounting for phase information

Uses the DFT!
(we’ll return to this
at the end of lecture)



How can this be used in a phase vocoder?

How would you slow this music down?

https://www.youtube.com/watch?v=O3_ihwhjHUw

How about changing the pitch?
Phase 
correlations 
must be 
respected!

Time

Frequency
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Properties of DFT

• Parseval’s Identity

• Proof (in matrix notation)
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

• Note: Circular convolution is commutative
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution


