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Digital Signal Processing

Lecture 6
Properties of DFT

based on slides by J.M. Kahn M. Lustig, EECS UC Berkeley




Announcements

- HW1 solutions posted -- self grading due
- HW2 due Friday

- SDR give after GSI Wednesday
» Finish reading Ch. 8, start Ch. 9

* ham radio licensing lectures Tue
6:30-8pm Cory 521

M. Lustig, EECS UC Berkeley




Cool things DSP

Dark Energy
Accelerated Expansion
Afterglow Light

« Cosmic Microwave qog Collom  DarkAges  Developmentor
Background radiation

a

E

ﬂéﬁ - ﬁ 4:" %‘,An_-um,’ 7 . } -
B % gﬁ%'%vm

: ’”‘l('

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years
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Last Time

* Discrete Fourier Transform
— Similar to DFS

— Sampling of the DTFT (subtitles....more later)

— Properties of the DFT

 Today
— Linear convolution with DFT
— Fast Fourier Transform

M. Lustig, EECS UC Berkeley




Properties of DFT

* Inherited from DFS (EE120/20) so no
need to be proved

* Linearity

0415171[71] -+ 042513'2[71] < Olel []C] -+ OQXQ [k]

 Circular Time Shift

zl((n —m))n] > X[kle™? /IR = XR]WR™
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Circular shift
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Properties of DFT

» Circular frequency shift

z[n]e!ETOM = 2 [n] W™ o X[((k 1) ~]

» Complex Conjugation

z"[n] < X7[((=K))~]
» Conjugate Symmetry for Real Signals

zln] = 7[n] < X|k] = X7 [((—F))n]
Show....

M. Lustig, EECS UC Berkeley




Properties of DFT

» Parseval’s ldentity
N—1
1
2 —_—
> leln)P =
n=0
* Proof (in matrix notation)

> | X[K]

k=0

1 1

—X*WHyW5L X = —X*X

N2 AN N
N-1
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Circular Convolution Sum

 Circular Convolution:

[ @@ Z $1 m))N]

for two signals of length N

* Note: Circular convolution is commutative

r2\n| @ z1|n| = z1[n| @ z2(n|

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

o ®

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

0 1 2 3 4 g "g ﬁ
T2 (N

Circular ‘flip’ _ L,
multiply and add y[n] = z1[n] @ x3[n] ="
Here: y[O]

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

L L, T

oo
o @

>
n

Equivalent periodic convolution over a period

yln] = z1[n] @ @2(n] =7

M. Lustig, EECS UC Berkeley




Sv
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Properties of DFT

» Circular Convolution: Let x1[n], x2[n] be length N

x1[n| @ x2(n] > Xilk] - Xo|K]
Very usefulll! ( for linear convolutions with DFT)

» Multiplication: Let x1[n], x2[n] be length N

il - aln] 4 X[ ® Ko

M. Lustig, EECS UC Berkeley




Linear Convolution

* Next....
— Using DFT, circular convolution is easy
— But, linear convolution is useful, not circular

— S0, show how to perform linear convolution
with circular convolution

— Used DFT to do linear convolution

M. Lustig, EECS UC Berkeley




Linear Convolution

- We start with two non-periodic seguences:
zn] 0<n<L-1
hln] 0<n<P-1

for example x[n] is a signal and h[n] an impulse response of a filter

* We want to compute the linear convolution:

yln] = 2l « hfn] = S efm]hln — m]

y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1
* Requires L - P multiplications

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution

« Zero-pad x[n] by P-1 zeros

_J zln] 0<n<L-1
Tl =10 L<n<L4P-2

- Zero-pad h[n] by L-1 zeros

h | Rn] 0<n<<P-1
»M =10 P<n<piP-2

* Now, both sequences are of length
M=L+P-1

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution

* Now, both sequences are of length
M=L+P-1

* We can now compute the linear
convolution using a circular one with length

M = L+P-1

| inear convolution via circular

— o T = Xzp[N] W) hppln] 0<n<M-—1
ik = debetnl = {O otherwise

M. Lustig, EECS UC Berkeley




Example
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M=L+P-1=8
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Example

T1|n)

O O
—

0 1 2 3 4 5 6 7
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To|n)
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0 1 2 3 4 5 6 7

M=L+P-1=8
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Example

M. Lustig, EECS UC Berkeley




Linear Convolution using DFT

» In practice we can implement a circulant
convolution using the DFT property:

zln|xhin] = x,5([n] @ hypln]
= DFT ' {DFT {x,[n]} - DFT {hyp[n]}}
for0 =n <M-1, M=L+P-1
» Advantage: DFT can be computed with
NlogoN complexity (FFT algorithm later!)

» Drawback: Must wait for all the samples --
huge delay -- incompatible with real-time

M. Lustig, EECS UC Berkeley




Block Convolution

* Problem:

— An input signal x[n], has very long length
(could be considered infinite)

— An impulse response h[n] has length P

— We want to take advantage of DFT/FFT and
compute convolutions in blocks that are shorter
than the signal

» Approach:
— Break the signal into small blocks
— Compute convolutions
— Combine the results

M. Lustig, EECS UC Berkeley




Block Convolution

Example:

h[n] Impulse response, Length P=6

-----------

x[n] Input Signal, Length P=33

y[n] Output Signal, Length P=38
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Overlap-Add Method

We decompose the input signal x[n] into non-overlapping segments
x¢[n] of length L:

%o [n] = x[n] rL < n.g (r+1)L—1
0 otherwise

The input signal is the sum of these input segments:

The output signal is the sum of the output segments x,[n] x h[n]:

y[n] = x[n] « hn] = > xc[n] = h[n] (1)
r=0

Each of the output segments x,[n] x h[n] is of length
N=L+P-1.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




Overlap-Add Method

We can compute each output segment x,[n| % h[n] with linear
convolution.
DFT-based circular convolution is usually more efficient:

@ Zero-pad input segment x,[n] to obtain x, ,5[n], of length N.

@ Zero-pad the impulse response h[n] to obtain h,[n], of length
N (this needs to be done only once).

@ Compute each output segment using:

x[n] * h[n] = DFT {DFT {x2p[n]} - DFT {hyp[n]}}

Since output segment x,[n]| x h[n] starts offset from its neighbor
xr—1[n] * h[n] by L, neighboring output segments overlap at P — 1
points.

Finally, we just add up the output segments using (1) to obtain the
output.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




Example of overlap and add:

* I Xo[n]
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X[n] = xo[n]+x1[n]+x2[N]
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Overlap-Save Method

Basic Idea

We split the input signal x[n] into overlapping segments x,[n] of
length L + P — 1.

Perform a circular convolution of each input segment x,[n] with
the impulse response h[n|, which is of length P using the DFT.
|dentify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.

This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




r1|n]
TT 100TTT TTTTT
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To|n]
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o o Valid linear convolution!
2 O T T
>
0 1 2 3 4 5 6 n
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Example of overlap and save:

Owverlap-Save, Input Segments, Length L = 16 Overlap-Save, Output Segments, Usable Length L - P + 1
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Owverlap-Save, Concatenation of Usable Output Segments

sed on Course Notes by J. M Kahn

SP 2015
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