Lecture 6
Properties of DFT

Cool things DSP

Properties of DFT

- Inherited from DFS (EE120/20) so no need to be proved
- Linearity

$$
\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n] \leftrightarrow \alpha_{1} X_{1}[k]+\alpha_{2} X_{2}[k]
$$

- Circular Time Shift

$$
x\left[((n-m))_{N}\right] \leftrightarrow X[k] e^{-j(2 \pi / N) k m}=X[k] W_{N}^{k m}
$$

Announcements

- HW1 solutions posted -- self grading due
- HW2 due Friday
- SDR give after GSI Wednesday
- Finish reading Ch. 8, start Ch. 9
- ham radio licensing lectures Tue 6:30-8pm Cory 521

Last Time

- Discrete Fourier Transform
- Similar to DFS
- Sampling of the DTFT (subtitles....more later)
- Properties of the DFT
- Today
- Linear convolution with DFT
- Fast Fourier Transform

Circular shift

Properties of DFT

- Circular frequency shift

$$
x[n] e^{j(2 \pi / N) n l}=x[n] W_{N}^{-n l} \leftrightarrow X\left[((k-l))_{N}\right]
$$

- Complex Conjugation

$$
x^{*}[n] \leftrightarrow X^{*}\left[((-k))_{N}\right]
$$

- Conjugate Symmetry for Real Signals

$$
\begin{array}{r}
x[n]=x^{*}[n] \leftrightarrow X[k]=X^{*}\left[((-k))_{N}\right] \\
\text { Show.... } \\
\text { M. Lustig, EECS UC Berkeley }
\end{array}
$$

Circular Convolution Sum

- Circular Convolution:
$x_{1}[n] ® x_{2}[n] \triangleq \sum_{m=0}^{N-1} x_{1}[m] x_{2}\left[((n-m))_{N}\right]$

for two signals of length N

- Note: Circular convolution is commutative

$$
x_{2}[n] ® x_{1}[n]=x_{1}[n] @ x_{2}[n]
$$

Compute Circular Convolution Sum

Circular 'flip' multiply and add Here: y[0]

Properties of DFT

- Parseval's Identity

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}
$$

- Proof (in matrix notation) $\mathbf{x}^{*} \mathbf{x}=\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)^{*}\left(\frac{1}{N} \mathbf{W}_{N}^{*} \mathbf{X}\right)=\frac{1}{N^{2}} \mathbf{X}^{*} \underbrace{\mathbf{W}_{N} \mathbf{W}_{N}^{*}}_{N \cdot \mathbf{I}} \mathbf{X}=\frac{1}{N} \mathbf{X}^{*} \mathbf{X}$

Compute Circular Convolution Sum

$$
y[n]=x_{1}[n] \text { (7) } x_{2}[n]=?
$$

Compute Circular Convolution Sum

Equivalent periodic convolution over a period
$y[n]=x_{1}[n]$ (7) $x_{2}[n]=$?

Result

$$
y[n]=x_{1}[n] \text { © } x_{2}[n]=?
$$

Linear Convolution

- Next....

- Using DFT, circular convolution is easy
- But, linear convolution is useful, not circular
- So, show how to perform linear convolution with circular convolution
- Used DFT to do linear convolution

Linear Convolution via Circular Convolution

- Zero-pad x[n] by P-1 zeros

$$
x_{\mathrm{zp}}[n]= \begin{cases}x[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq L+P-2\end{cases}
$$

- Zero-pad h[n] by L-1 zeros

$$
h_{\mathrm{zp}}[n]= \begin{cases}h[n] & 0 \leq n \leq P-1 \\ 0 & P \leq n \leq L+P-2\end{cases}
$$

- Now, both sequences are of length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$

Properties of DFT

- Circular Convolution: Let $\mathrm{x} 1[\mathrm{n}], \mathrm{x} 2[\mathrm{n}]$ be length N

$$
x_{1}[n] @ x_{2}[n] \leftrightarrow X_{1}[k] \cdot X_{2}[k]
$$

Very useful!!! (for linear convolutions with DFT)

- Multiplication: Let $\mathrm{x} 1[\mathrm{n}], \mathrm{x} 2[\mathrm{n}]$ be length N

$$
x_{1}[n] \cdot x_{2}[n] \leftrightarrow \frac{1}{N} X_{1}[k] @ X_{2}[k]
$$

Linear Convolution

- We start with two non-periodic sequences:

$$
\begin{array}{ll}
x[n] & 0 \leq n \leq L-1 \\
h[n] & 0 \leq n \leq P-1
\end{array}
$$

for example $x[n]$ is a signal and $h[n]$ an impulse response of a filter

- We want to compute the linear convolution:

$$
y[n]=x[n] * h[n]=\sum_{m=0}^{L-1} x[m] h[n-m]
$$

$y[n]$ is nonzero for $0 \leq n \leq L+P-2$ with length $\mathbf{M}=L+P-1$

- Requires L•P multiplications
M. Lustig, EECS UC Berkeley

Linear Convolution via Circular Convolution

- Now, both sequences are of length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$
- We can now compute the linear convolution using a circular one with length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$

Linear convolution via circular

$$
y[n]=x[n] * y[n]= \begin{cases}x_{\mathrm{zp}}[n] \llbracket h_{\mathrm{zp}}[n] & 0 \leq n \leq M-1 \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
M=L+P-1=8
$$

M. Lustig, EECS UC Berkeley

Example

$$
M=L+P-1=8
$$

$y[n]=x_{1}[n]$ (8) $x_{2}[n]=x_{1}[n] * x_{2}[n]$

Block Convolution

- Problem:
- An input signal $x[n]$, has very long length (could be considered infinite)
- An impulse response $h[n]$ has length P
- We want to take advantage of DFT/FFT and compute convolutions in blocks that are shorter than the signal

- Approach:

- Break the signal into small blocks
- Compute convolutions
- Combine the results

Example

$$
M=L+P-1=8
$$

Linear Convolution using DFT

- In practice we can implement a circulant convolution using the DFT property:

$$
\begin{aligned}
x[n] * h[n] & =x_{\mathrm{zp}}[n] \text { © } h_{\mathrm{zp}}[n] \\
& =\mathcal{D F}^{-1}\left\{\mathcal{D F} \mathcal{T}\left\{x_{\mathrm{zp}}[n]\right\} \cdot \mathcal{D \mathcal { F } \mathcal { T } \{ h _ { \mathrm { zp } } [n] \} \}}\right. \\
\text { for } 0 \leq \mathrm{n} & \leq \mathrm{M}-1, \mathrm{M}=\mathrm{L}+\mathrm{P}-1
\end{aligned}
$$

- Advantage: DFT can be computed with $\mathrm{Nlog}_{2} \mathrm{~N}$ complexity (FFT algorithm later!)
- Drawback: Must wait for all the samples -huge delay -- incompatible with real-time

Block Convolution

Example:
$\mathrm{h}[\mathrm{n}]$ Impulse response, Length $\mathrm{P}=6$

PTMPT

Overlap-Add Method

We decompose the input signal $x[n]$ into non-overlapping segments $x_{r}[n]$ of length L :

$$
x_{r}[n]= \begin{cases}x[n] & r L \leq n \leq(r+1) L-1 \\ 0 & \text { otherwise }\end{cases}
$$

The input signal is the sum of these input segments:

$$
x[n]=\sum_{r=0}^{\infty} x_{r}[n]
$$

The output signal is the sum of the output segments $x_{r}[n] * h[n]$:

$$
\begin{equation*}
y[n]=x[n] * h[n]=\sum_{r=0}^{\infty} x_{r}[n] * h[n] \tag{1}
\end{equation*}
$$

Each of the output segments $x_{r}[n] * h[n]$ is of length $N=L+P-1$.
Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing

Overlap-Add Method

We can compute each output segment $x_{r}[n] * h[n]$ with linear convolution.
DFT-based circular convolution is usually more efficient:

- Zero-pad input segment $x_{r}[n]$ to obtain $x_{r, \text { zp }}[n]$, of length N.
- Zero-pad the impulse response $h[n]$ to obtain $h_{\text {zp }}[n]$, of length N (this needs to be done only once).
- Compute each output segment using:

$$
x_{r}[n] * h[n]=\mathcal{D} \mathcal{F} \mathcal{T}^{-1}\left\{\mathcal{D F} \mathcal{T}\left\{x_{r, z \mathrm{p}}[n]\right\} \cdot \mathcal{D F} \mathcal{T}\left\{h_{\mathrm{zp}}[n]\right\}\right\}
$$

Since output segment $x_{r}[n] * h[n]$ starts offset from its neighbor $x_{r-1}[n] * h[n]$ by L, neighboring output segments overlap at $P-1$ points.
Finally, we just add up the output segments using (1) to obtain the output.

Overlap-Save Method

Basic Idea
We split the input signal $x[n]$ into overlapping segments $x_{r}[n]$ of length $L+P-1$.
Perform a circular convolution of each input segment $x_{r}[n]$ with the impulse response $h[n]$, which is of length P using the DFT. Identify the L-sample portion of each circular convolution that corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples circularly convolved with a P sample filter.

Example of overlap and save:

