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Lecture 6
Properties of DFT

M. Lustig, EECS UC Berkeley

based on slides by J.M. Kahn

Announcements

+ HW1 solutions posted -- self grading due
+ HW2 due Friday

+ SDR give after GSI Wednesday
* Finish reading Ch. 8, start Ch. 9

+ ham radio licensing lectures Tue
6:30-8pm Cory 521

M. Lustig, EECS UC Berkeley

Cool things DSP

» Cosmic Microwave
Background radiation

Big Bang Expansion
13.7 billion years

Last Time

* Discrete Fourier Transform
— Similar to DFS
— Sampling of the DTFT (subtitles....more later)
— Properties of the DFT

* Today
— Linear convolution with DFT
— Fast Fourier Transform
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Properties of DFT

* Inherited from DFS (EE120/20) so no
need to be proved

* Linearity

a1x1[n] + asxaln] < a1 X [k] + as Xs[k]
* Circular Time Shift

z[((n —m))n] < X[kle 7T/ = X [k]W™

Circular shift
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Properties of DFT

« Circular frequency shift
w[n)e! EN = 2 [n]W ™ & X[((k —1))w]
+ Complex Conjugation
2" [n] < X*[((—=k))n]

+ Conjugate Symmetry for Real Signals

zln] = 2*[n] <> X[k] = X*[((=k))n]
Show....

Properties of DFT

+ Parseval’s ldentity

* Proof (in matrix notation)

N-1 1
>zl = N > IX[R)P
n=0

* 1 * * 1 * 1 * * 1 *
N-I
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Circular Convolution Sum

* Circular Convolution:

N-—-1

z1[n] @ waln] £ Y @1 [mlas[((n — m)) ]

m=0

for two signals of length N

* Note: Circular convolution is commutative

xa[n] @ z1[n] = x1[n] @ z2[n]

Compute Circular Convolution Sum
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Compute Circular Convolution Sum

z1[n]
10 T T T o
0 1 2 3 4 g % n
z2(n]
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Circular “flip’ _ _9
multiply and add yin] = mln] @ @2[n] =
Here: y[0]

Compute Circular Convolution Sum

x1[n)
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Equivalent periodic convolution over a p

yln] = z1[n] @ wo[n] =7

n

eriod
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Result

yln] = 1[n] @ w3n] =7
4

Properties of DFT

* Circular Convolution: Let x1[n], x2[n] be length N

z1[n] @ z2[n] <> Xi[k] - X2[K]

Very usefulll!l ( for linear convolutions with DFT)

» Multiplication: Let x1[n], x2[n] be length N

siln] - z3ln) ¢ X1 K] @ XalK
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Linear Convolution

* Next....
— Using DFT, circular convolution is easy
— But, linear convolution is useful, not circular

— So, show how to perform linear convolution
with circular convolution

— Used DFT to do linear convolution

Linear Convolution

+ We start with two non-periodic sequences:
zn] 0<n<L-1
hln] 0<n<P-1

for example x[n] is a signal and h[n] an impulse response of a filter

* We want to compute the linear convolution:

L—-1

yln) = ofn] « hin] = 3 afm]hfn — m]

m=0

y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1
* Requires L - P multiplications
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Linear Convolution via Circular Convolution

+ Zero-pad x[n] by P-1 zeros

_f z[n] 0<n<L-1
T =3 0" Len<Lip-2

+ Zero-pad h[n] by L-1 zeros
_f hln] 0<n<P-1
th[”]_{o P<n<L+P-2

* Now, both sequences are of length
M=L+P-1

Linear Convolution via Circular Convolution

* Now, both sequences are of length
M=L+P-1

+ We can now compute the linear
convolution using a circular one with length
M = L+P-1

Linear convolution via circular

Xgp[n] @ hep[n] 0<n<M-—1
0

otherwise

yln] = x[n] * y[n] = {
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Example

1[n]
10 °
01 2 3 4 n
x9[n)
10 o
P=4
01 2 3 n

M=L+P-1=8

Example

z1[n]

19 T T o T

o—o0—o

0o 1 2 3 4 5 6 7 N
x2[n]

1 0 o
01 2 3 4 5 6 71

M=L+P-1=8
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Example

z1[n]

i T T T T

oo o

01 2 3 4/ 5 6 7\|n
z2[n]

1 0 T

0 1 2 3 4\5 6 /1 n

Circular ‘flip’

M=L+P-1=8
yln] = z1[n] ® x2[n] = z1[n] * z2[n]

Linear Convolution using DFT

* In practice we can implement a circulant
convolution using the DFT property:

x[n] * h[n]

Top[n] @ Nyp 1]
DFT ' {DFT {a,p[n]} - DFT {hsp[n]}}
for0 =n < M-1, M=L+P-1
» Advantage: DFT can be computed with
Nlogz2N complexity (FFT algorithm later!)
* Drawback: Must wait for all the samples --
huge delay -- incompatible with real-time
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Block Convolution

* Problem:

— An input signal x[n], has very long length
(could be considered infinite)

— An impulse response h[n] has length P

— We want to take advantage of DFT/FFT and

compute convolutions in blocks that are shorter
than the signal

* Approach:
— Break the signal into small blocks
— Compute convolutions
— Combine the results

Block Convolution

Example:
h[n] Impulse response, Length P=6

ITTTTT

x[n] Input Signal, Length P=33

<§¢3?PT?W$¢ ?Tﬁi’ﬁo@ | 8 o o
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y[n] Output Signal, Length P=38
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Overlap-Add Method Overlap-Add Method

We decompose the input signal x[n] into non-overlapping segments

x,[n] of length L: We can compute each output segment x,[n] * h[n] with linear
convolution.
x[n] rL<n<(r+1)L-1 DFT-based circular convolution is usually more efficient:
x[n] = . . .
0 otherwise @ Zero-pad input segment x,[n] to obtain x, ;p[n], of length N.

@ Zero-pad the impulse response h[n] to obtain h,,[n], of length
N (this needs to be done only once).
o Compute each output segment using:

The input signal is the sum of these input segments:

x[n] = Z x¢[n]
r=0

The output signal is the sum of the output segments x,[n] * h[n]:

x[n] % h[n] = DFT Y {DFT {xrzp[n]} - DFT {hyp[n]}}

Since output segment x,[n] * h[n] starts offset from its neighbor

o0 Xr—1[n] * h[n] by L, neighboring output segments overlap at P — 1

y[n] = x[n]  h[n] =" x[n] * h[n] (1) points.
r=0 Finally, we just add up the output segments using (1) to obtain the

output.

Each of the output segments x,[n] * h[n] is of length
N=L+P-1
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Example of overlap and add: Overlap-Save Method
T Xo[n] Xo[N]
[ ?ﬁl = P ik S
X En] £ ] Basic Idea
L ! _ o I. Xdn We split the input signal x[n] into overlapping segments x,[n] of
&uﬂ{k - T = length L+ P — 1.
. 2 — . = — Perform a circular convolution of each input segment x,[n] with
T o r3 the impulse response h[n], which is of length P using the )
xafn] xalri h | h hich fl h P he DFT
?TTTTTT.:T.; - . .;q‘TTTTTTTT Identify the L—sam.ple portion of.each circular .convolutlon that
3 = corresponds to a linear convolution, and save it.
o This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.
X[n] = xo[n]+x1[N]+X2[N] y[n] = yo[n]+y1[n]+yz[n]
o e??T?‘?‘? @ ?T TTﬁOTQ <w??ﬁ'??o | ?TTTTT%‘?%
L S
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Example of overlap and save:
Recall:
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