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Digital Signal Processing

Lecture 6
Properties of DFT

some of the material based on slides by J.M. Kahn M. Lustig, EECS UC Berkeley




Announcements

- HW1 solutions posted -- self grading due
- HW2 due Friday

» SDR give after GSI Wednesday
» Finish reading Ch. 8, start Ch. 9

* ham radio licensing lectures Tue
6:30-8pm Cory 521

M. Lustig, EECS UC Berkeley




Cool things DSP

« Cosmic Microwave

Background radiation

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

M. Lustig, EECS UC Berkeley




Last Time

* Discrete Fourier Transform
— Similar to DFS

— Sampling of the DTFT (subtitles....more later)

— Properties of the DFT

 Today
— Linear convolution with DFT
— Fast Fourier Transform

M. Lustig, EECS UC Berkeley




Properties of DFT

* Inherited from DFS (EE120/20) so no
need to be proved

* Linearity
0415171[71] -+ 042513'2[71] <> Olel []C] -+ OQXQ [k]
» Circular Time Shift
z[((n —m))n] ¢ X[k]e I CTF — X[EWR™

M. Lustig, EECS UC Berkeley







Properties of DFT

» Circular frequency shift

zln)e? BTN = g ln)WI™ < X[((k — 1) n]
» Complex Conjugation
z"[n] < X7[((—F))~]

» Conjugate Symmetry for Real Signals

zln] = «7[n] < X|k] = X*[((—F))n]
Show....

M. Lustig, EECS UC Berkeley




Properties of DFT

» Parseval’s ldentity
N—1
1
2 ———
>l =
n=0
* Proof (in matrix notation)

> | X[K]

k=0

1 1

—_X*WHyW5L X = —X*X

Nt AN N
N-1
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Circular Convolution Sum

 Circular Convolution:

z1|n] @ x2[n Z T1|m —m))N]

for two signals of length N

* Note: Circular convolution is commutative

r2\n| @ z1|n| = z1|n| @ z2[n|

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

x1|n]
1 ¢ O T TT

0 1 2 3 4 5 6 n
A

z3|n]

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

o
N
w
1N
O1€
o €
Sy

Circular flip’ _ L,
multiply and add y[n] = z1[n] @ z3[n] ="

Here: y[O]

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

L L, T

a®
o @

>
n

Equivalent periodic convolution over a period

yln] = z1[n] @ x2(n] =7

M. Lustig, EECS UC Berkeley
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Properties of DFT

» Circular Convolution: Let x1[n], x2[n] be length N

z1[n| @ z2|n] > Xqlk] - Xo|k]
Very usefullll ( for linear convolutions with DFT)

» Multiplication: Let x1[n], x2[n] be length N

il - aln] > X[ ® KXol

M. Lustig, EECS UC Berkeley




Linear Convolution

* Next....
— Using DFT, circular convolution is easy
— But, linear convolution is useful, not circular

— S0, show how to perform linear convolution
with circular convolution

— Used DFT to do linear convolution

M. Lustig, EECS UC Berkeley




Linear Convolution

» We start with two non-periodic seguences:
zn] 0<n<L-1
hln] 0<n<P-1

for example x|[n] is a signal and h[n] an impulse response of a filter

* We want to compute the linear convolution:

yln] = 2fn) « hfn] = S efm]hln — m]

y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1
* Requires L - P multiplications

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution
« Zero-pad x[n] by P-1 zeros

[ zln] 0<n<L-1
Tl =00 L<n<L4P-2

« Zero-pad h[n] by L-1 zeros

h | Rn] 0<n<S<P-1
»M =10 P<n<piP-2

* Now, both sequences are of length
M=L+P-1

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution

* Now, both sequences are of length
M=L+P-1

* We can now compute the linear
convolution using a circular one with length

M = L+P-1

. inear convolution via circular

— o T = Xzp[N] W) hppln] 0<n<M-—1
ik = debetnl = {0 otherwise

M. Lustig, EECS UC Berkeley




Example

0 1 4 n
A
To|n)]
1 0
[ e
0O 1 3 n

M=L+P-1=8

M. Lustig, EECS UC Berkeley




Example

T1|n)
OO O
—

0 1 3 4 5 6 7
A
To|n)
(0] T

e—o o o
0 1 3 4 5 6 7

M=L+P-1=8

M. Lustig, EECS UC Berkeley




Example

0 1 2 5 45 6 77
Circular ‘flip’
M=L+P-1=8
yln] = z1[n] @ z2[n| = x1[n| * x2|n|

M. Lustig, EECS UC Berkeley




Linear Convolution using DFT

» In practice we can implement a circulant
convolution using the DFT property:

zln| xhin] = x;p[n] @ hypln]
= DFT ' {DFT {x,[n]} - DFT {hyp[n]}}
for0 =n <M-1, M=L+P-1
» Advantage: DFT can be computed with
Nlog2N complexity (FFT algorithm later!)

» Drawback: Must wait for all the samples --
huge delay -- incompatible with real-time

M. Lustig, EECS UC Berkeley




Block Convolution

* Problem:

— An input signal x[n], has very long length
(could be considered infinite)

— An impulse response h[n] has length P

— We want to take advantage of DFT/FFT and
compute convolutions in blocks that are shorter
than the signal

» Approach:
— Break the signal into small blocks
— Compute convolutions
— Combine the results

M. Lustig, EECS UC Berkeley







Overlap-Add Method

We decompose the input signal x[n] into non-overlapping segments
x¢[n] of length L:

%o [n] = x[n] rL < n.g (r+1)L—1
0 otherwise

The input signal is the sum of these input segments:

The output signal is the sum of the output segments x,[n] x h[n]:

y[n] = x[n] « hn] = > xc[n] = h[n] (1)
r=0

Each of the output segments x,[n] x h[n] is of length
N=L+P-1.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




Overlap-Add Method

We can compute each output segment x,[n| % h[n] with linear
convolution.
DFT-based circular convolution is usually more efficient:

@ Zero-pad input segment x,[n] to obtain x, ,5[n], of length N.

@ Zero-pad the impulse response h[n] to obtain h,[n], of length
N (this needs to be done only once).

@ Compute each output segment using:

x[n] * h[n] = DFT {DFT {x2p[n]} - DFT {hyp[n]}}

Since output segment x,[n]| x h[n] starts offset from its neighbor
xr—1[n] * h[n] by L, neighboring output segments overlap at P — 1
points.

Finally, we just add up the output segments using (1) to obtain the
output.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




Example of overlap and add:

* I Xo[n]

X[n] = xo[n]+x1[n]+x2[N]

‘wﬁﬁ%uﬂfoﬁml

L

L

i

4

Y

i Xo[n]
ocmcmme—_e |
X1[n]
’%&,JJ{L -- L‘Lé"
xelnll
=P T‘i’%ﬁm&,
yIn] = yoln]+y1[n]+yaln]
palilt |




Overlap-Save Method

Basic Idea

We split the input signal x[n] into overlapping segments x,[n] of
length L + P — 1.

Perform a circular convolution of each input segment x,[n] with
the impulse response h[n|, which is of length P using the DFT.
|dentify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.

This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2015 , EE123 Digital Signal Processing




Recall:

T1|n]
TT 100TTT TTTTT
-— -— >
0 1 2 3 4 5 6
To|n]
T 1
|
0 1 2 3 4 5 6 N
4 4 O O
o) o Valid linear convolution!
2 T
>
0 1 2 3 4 5 6 n
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Example of overlap and save:

Owverlap-Save, Input Segments, Length L = 16 Overlap-Save, Output Segments, Usable Length L - P + 1
o Usable (yo[n])
o5l T i o.s- Unusable b
= O<P<r R TP @ = o ,_\dfﬂl‘ﬁ’n
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Owverlap-Save, Concatenation of Usable Output Segments

sed on Course Notes by J. M Kahn

SP 2015
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