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Lecture 6
Properties of DFT 

some of the material based on slides by J.M. Kahn
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Announcements

• HW1 solutions posted -- self grading due
• HW2 due Friday

• SDR give after GSI Wednesday
• Finish reading Ch. 8, start Ch. 9

• ham radio licensing lectures Tue 
6:30-8pm Cory 521
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Cool things DSP

• Cosmic Microwave
Background radiation
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Last Time

• Discrete Fourier Transform
– Similar to DFS
– Sampling of the DTFT (subtitles....more later)
– Properties of the DFT

• Today
– Linear convolution with DFT
– Fast Fourier Transform  



x[((n�m))N ] $ X[k]e�j(2⇡/N)km = X[k]W km
N
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Properties of DFT

• Inherited from DFS (EE120/20) so no 
need to be proved

• Linearity

• Circular Time Shift

↵1x1[n] + ↵2x2[n] $ ↵1X1[k] + ↵2X2[k]
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Circular shift
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Properties of DFT

• Circular frequency shift

• Complex Conjugation

• Conjugate Symmetry for Real Signals

x[n]ej(2⇡/N)nl = x[n]W�nl
N $ X[((k � l))N ]

x

⇤[n] $ X

⇤[((�k))N ]

x[n] = x

⇤[n] $ X[k] = X

⇤[((�k))N ]

Show....
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Properties of DFT

• Parseval’s Identity

• Proof (in matrix notation)
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

x1[n]�N x2[n]
�
=

N�1X

m=0

x1[m]x2[((n�m))N ]

x2[n]�N x1[n] = x1[n]�N x2[n]

• Note: Circular convolution is commutative



x1[n]

x2[n]

y[n] = x1[n] �7 x2[n] =?
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3



x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Circular ‘flip’
multiply and add
Here: y[0]

y[n] = x1[n] �7 x2[n] =?



x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Equivalent periodic convolution over a period

y[n] = x1[n] �7 x2[n] =?
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Result

n0 1 2 3 4

2

5 6

y[n] = x1[n] �7 x2[n] =?
4
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

x1[n]�N x2[n] $ X1[k] ·X2[k]

x1[n] · x2[n] $
1

N

X1[k]�N X2[k]

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution
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Linear Convolution

• We start with two non-periodic sequences:

• We want to compute the linear convolution:

• Requires L·P multiplications

for example x[n] is a signal and h[n] an impulse response of a filter

x[n] 0  n  L� 1

h[n] 0  n  P � 1

y[n] = x[n] ⇤ h[n] =
L�1X

m=0

x[m]h[n�m]

y[n] is nonzero for 0 ≤ n ≤ L+P-2 with length M=L+P-1
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Linear Convolution via Circular Convolution

• Zero-pad x[n] by P-1 zeros

• Zero-pad h[n] by L-1 zeros

• Now, both sequences are of length 
M=L+P-1

xzp[n] =

⇢
x[n] 0  n  L� 1
0 L  n  L+ P � 2

hzp[n] =

⇢
h[n] 0  n  P � 1
0 P  n  L+ P � 2
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Linear Convolution via Circular Convolution

• Now, both sequences are of length 
M=L+P-1 

• We can now compute the linear 
convolution using a circular one with length 
M = L+P-1

Linear Convolution using the DFT

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

We can compute the linear convolution x [n] ⇤ h[n] = y [n] by
computing circular convolution x

zp

[n]�M h
zp

[n]:

Linear convolution via circular

y [n] = x [n] ⇤ y [n] =
(
x
zp

[n]�M h
zp

[n] 0  n  M � 1

0 otherwise

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing



x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

L=5

P=4

M = L + P - 1 = 8



x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75



x1[n]

x2[n]

y[n] = x1[n] �8 x2[n] = x1[n] ⇤ x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75

Circular ‘flip’
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Linear Convolution using DFT

• In practice we can implement a circulant 
convolution using the DFT property:

• Advantage: DFT can be computed with 
Nlog2N complexity (FFT algorithm later!)

• Drawback: Must wait for all the samples -- 
huge delay -- incompatible with real-time

x[n] ⇤ h[n] = xzp[n]�M hzp[n]

= DFT �1 {DFT {xzp[n]} · DFT {hzp[n]}}
for 0 ≤ n ≤ M-1, M=L+P-1
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Block Convolution

• Problem: 
– An input signal x[n], has very long length 

(could be considered infinite)
– An impulse response h[n] has length P
– We want to take advantage of DFT/FFT and 

compute convolutions in blocks that are shorter 
than the signal

• Approach:
– Break the signal into small blocks
– Compute convolutions
– Combine the results



M. Lustig,  EECS UC Berkeley

Block Convolution

Example:
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Block Convolution

Example:
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Block Convolution

Example:
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h[n] Impulse response, Length P=6 

x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38 

Block Convolution

Example:



Overlap-Add Method

We decompose the input signal x [n] into non-overlapping segments
x
r

[n] of length L:

x
r

[n] =

(
x [n] rL  n  (r + 1)L� 1

0 otherwise

The input signal is the sum of these input segments:

x [n] =
1X

r=0

x
r

[n]

The output signal is the sum of the output segments x
r

[n] ⇤ h[n]:

y [n] = x [n] ⇤ h[n] =
1X

r=0

x
r

[n] ⇤ h[n] (1)

Each of the output segments x
r

[n] ⇤ h[n] is of length
N = L+ P � 1.
Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2015



Overlap-Add Method

We can compute each output segment x
r

[n] ⇤ h[n] with linear
convolution.
DFT-based circular convolution is usually more e�cient:

Zero-pad input segment x
r

[n] to obtain x
r ,zp[n], of length N.

Zero-pad the impulse response h[n] to obtain h
zp

[n], of length
N (this needs to be done only once).
Compute each output segment using:

x
r

[n] ⇤ h[n] = DFT �1 {DFT {x
r ,zp[n]} · DFT {h

zp

[n]}}

Since output segment x
r

[n] ⇤ h[n] starts o↵set from its neighbor
x
r�1

[n] ⇤ h[n] by L, neighboring output segments overlap at P � 1
points.
Finally, we just add up the output segments using (1) to obtain the
output.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2015



Overlap-Add Method
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Block Convolution

Example:
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Block Convolution

Example:
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x0[n]

x1[n]

x2[n]

x[n] = x0[n]+x1[n]+x2[n] y[n] = y0[n]+y1[n]+y2[n]

x0[n]

x1[n]

x2[n]

Example of overlap and add:



Overlap-Save Method

Basic Idea
We split the input signal x [n] into overlapping segments x

r

[n] of
length L+ P � 1.
Perform a circular convolution of each input segment x

r

[n] with
the impulse response h[n], which is of length P using the DFT.
Identify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.
This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal ProcessingSP 2015
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Recall:
x1[n]

x2[n]

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

n0 1 2 3 4

2

5 6

4
Valid linear convolution!



Overlap-Save Method
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Example of overlap and save:


