Lecture 8
 FFT
 Spectral Analysis

based on slides by J.M. Kahn

- Most FFT algorithms exploit the following properties of $W_{N}^{k n}$:
- Conjugate Symmetry

$$
W_{N}^{k(N-n)}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}
$$

- Periodicity in n and k :

$$
W_{N}^{k n}=W_{N}^{k(n+N)}=W_{N}^{(k+N) n}
$$

- Power:

$$
W_{N}^{2}=W_{N / 2}
$$

Decimation-in-Time Fast Fourier Transform

Let $n=2 r(n$ even $)$ and $n=2 r+1$ (n odd):

$$
\begin{aligned}
X[k] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N}^{2 r k}+W_{N}^{k} \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N}^{2 r k}
\end{aligned}
$$

- Note that:

$$
W_{N}^{2 r k}=e^{-j\left(\frac{2 \pi}{N}\right)(2 r k)}=e^{-j\left(\frac{2 \pi}{N / 2}\right) r k}=W_{N / 2}^{r k}
$$

Remember this trick, it will turn up often.

Decimation-in-Time Fast Fourier Transform

- Hence:

$$
\begin{aligned}
X[k] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k} \\
& \triangleq G[k]+W_{N}^{k} H[k], \quad k=0, \ldots, N-1
\end{aligned}
$$

where we have defined:

$$
\begin{aligned}
G[k] \triangleq \sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} & \Rightarrow \text { DFT of even id } x \\
H[k] \triangleq \sum_{r=0}^{(N / 2)-1} x[2 r+1] W_{N / 2}^{r k} & \Rightarrow \text { DFT of odd idx }
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform

- Both $G[k]$ and $H[k]$ are periodic, with period $N / 2$. For example

$$
\begin{aligned}
G[k+N / 2] & =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r(k+N / 2)} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} W_{N / 2}^{r(N / 2)} \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k} \\
& =G[k]
\end{aligned}
$$

so

$$
\begin{aligned}
G[k+(N / 2)] & =G[k] \\
H[k+(N / 2)] & =H[k]
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform

$$
X[k]=G[k]+W_{N}^{k} H[k] \quad \forall\left\{k: 0 \leq k<\frac{N}{2}\right\} .
$$

- for $\frac{N}{2} \leq k<N$:

$$
W_{N}^{k+(N / 2)}=?
$$

$$
X[k+(N / 2)]=?
$$

Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as

Decimation-in-Time Fast Fourier Transform

- The periodicity of $G[k]$ and $H[k]$ allows us to further simplify.
- For the first $N / 2$ points we calculate $G[k]$ and $W_{N}^{k} H[k]$, and then compute the sum

$$
X[k]=G[k]+W_{N}^{k} H[k] \quad \forall\left\{k: 0 \leq k<\frac{N}{2}\right\}
$$

How does periodicity help for $\frac{N}{2} \leq k<N$?

Decimation-in-Time Fast Fourier Transform

$$
X[k+(N / 2)]=G[k]-W_{N}^{k} H[k]
$$

We previously calculated $G[k]$ and $W_{N}^{k} H[k]$.

Now we only have to compute their difference to obtain the second half of the spectrum. No additional multiplies are required.

Decimation-in-Time Fast Fourier Transform

- The N-point DFT has been reduced two $N / 2$-point DFTs, plus $N / 2$ complex multiplications. The 8 sample DFT is then

Decimation-in-Time Fast Fourier Transform

- Still $O\left(N^{2}\right)$ operations..... What shall we do?

Decimation-in-Time Fast Fourier Transform

- At this point for the 8 sample DFT, we can replace the $N / 4=2$ sample DFT's with a single butterfly.
The coefficient is

$$
W_{N / 4}=W_{8 / 4}=W_{2}=e^{-j \pi}=-1
$$

The diagram of this stage is then

Decimation-in-Time Fast Fourier Transform

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a butterfly operation, e.g., the computation of $X[0]$ and $X[4]$ from $G[0]$ and $H[0]$:

This is an important operation in DSP.

Decimation-in-Time Fast Fourier Transform

- We can use the same approach for each of the $N / 2$ point DFT's. For the $N=8$ case, the $N / 2$ DFTs look like

*Note that the inputs have been reordered again

Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

This the decimation-in-time FFT algorithm.

Decimation-in-Time Fast Fourier Transform

- In general, there are $\log _{2} N$ stages of decimation-in-time.
- Each stage requires $N / 2$ complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N / 2) \log _{2} N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
- First stage: split into odd and even. Zero low-order bit first
- Next stage repeats with next zero-lower bit first.
- Net effect is reversing the bit order of indexes

Decimation-in-Frequency Fast Fourier Transform

The DFT is

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

If we only look at the even samples of $X[k]$, we can write $k=2 r$,

$$
X[2 r]=\sum_{n=0}^{N-1} x[n] W_{N}^{n(2 r)}
$$

We split this into two sums, one over the first $N / 2$ samples, and the second of the last $N / 2$ samples.

$$
X[2 r]=\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)}
$$

Decimation-in-Frequency Fast Fourier Transform

$$
\begin{aligned}
X[2 r] & =\operatorname{DFT}_{\frac{N}{2}}\{(x[n]+x[n+N / 2])\} \\
X[2 r+1] & =\operatorname{DFT}_{\frac{N}{2}}\left\{(x[n]-x[n+N / 2]) W_{N}^{n}\right\}
\end{aligned}
$$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the $N / 2$ DFTs, and the $N / 4$ DFT's until we reach simple butterflies.

This is illustrated in the following table for $N=8$.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Decimation-in-Frequency Fast Fourier Transform

But $W_{N}^{2 r(n+N / 2)}=W_{N}^{2 r n} W_{N}^{N}=W_{N}^{2 r n}=W_{N / 2}^{r n}$
We can then write

$$
\begin{aligned}
X[2 r] & =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)} \\
& =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r n} \\
& =\sum_{n=0}^{(N / 2)-1}(x[n]+x[n+N / 2]) W_{N / 2}^{r n}
\end{aligned}
$$

This is the $N / 2$-length DFT of first and second half of $x[n]$ summed.

Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length N is a composite number.
For example, if $N=6$, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's

- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

FFT as Matrix Operation

$\left(\begin{array}{c}x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1]\end{array}\right)=\left(\begin{array}{ccccc}w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & w_{N}^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}\end{array}\right)\left(\begin{array}{c}x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1]\end{array}\right)$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries.

FFT as Matrix Operation
$\left(\begin{array}{c}x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1]\end{array}\right)=\left(\begin{array}{ccccc}w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & w_{N}^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}\end{array}\right)\left(\begin{array}{c}\times[0] \\ \vdots \\ \times[n] \\ \vdots \\ \times[N-1]\end{array}\right)$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries
- FFT is a decomposition of W_{N} into a more sparse form: $F_{N}=\left[\begin{array}{cc}I_{N / 2} & D_{N / 2} \\ I_{N / 2} & -D_{N / 2}\end{array}\right]\left[\begin{array}{cc}W_{N / 2} & 0 \\ 0 & W_{N / 2}\end{array}\right]\left[\begin{array}{c}\text { Even-Odd Perm. } \\ \text { Matrix }\end{array}\right]$
- $I_{N / 2}$ is an identity matrix. $D_{N / 2}$ is a diagonal with entries $1, W_{N}, \cdots, W_{N}^{N / 2-1}$

Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal and compute the spectrum with the DFT.

However, there are many important issues and tradeoffs:

- Signal duration vs spectral resolution
- Signal sampling rate vs spectral range
- Spectral sampling rate
- Spectral artifacts

Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:

FFT as Matrix Operation

Example: $N=4$
$F_{4}=\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & W_{4} \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -W_{4}\end{array}\right]\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

- A. Gilbert et. al, "Near-optimal sparse Fourier representations via sampling
- H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
- Others......
- $\mathrm{O}(\mathrm{K} \log \mathrm{N})$ instead of $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Spectral Analysis with the DFT

Two important tools:

- Applying a window to the input signal - reduces spectral artifacts
- Padding input signal with zeros - increases the spectral sampling

Key Parameters:

Parameter	Symbol	Units
Sampling interval	T	s
Sampling frequency	$\Omega_{s}=\frac{2 \pi}{T}$	$\mathrm{rad} / \mathrm{s}$
Window length	L	unitless
Window duration	$L \cdot T$	s
DFT length	$N \geq L$	unitless
DFT duration	$N \cdot T$	s
Spectral resolution	$\frac{\Omega_{s}}{L}=\frac{2 \pi}{L \cdot T}$	$\mathrm{rad} / \mathrm{s}$
Spectral sampling interval	$\frac{\Omega_{s}}{N}=\frac{2 \pi}{N \cdot T}$	$\mathrm{rad} / \mathrm{s}$

Filtered Continuous-Time Signal

We consider an example:
$x_{c}(t)=A_{1} \cos \omega_{1} t+A_{2} \cos \omega_{2} t$
$X_{c}(j \Omega)=A_{1} \pi\left[\delta\left(\Omega-\omega_{1}\right)+\delta\left(\Omega+\omega_{1}\right)\right]+A_{2} \pi\left[\delta\left(\Omega-\omega_{2}\right)+\delta\left(\Omega+\omega_{2}\right)\right.$.

Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is $\Omega_{s} / 2 \pi=1 / T=20 \mathrm{~Hz}$, sufficiently high that aliasing does not occur.

Windowed Sampled Signal

Convolution with $W\left(e^{j \omega}\right)$ has two effects in the spectrum:
(1) It limits the spectral resolution. - Main lobes of the DTFT of the window
(2) The window can produce spectral leakage. - Side lobes of the DTFT of the window

[^0]Windows (as defined in MATLAB)

Windows

- All of the window functions $w[n]$ are real and even
- All of the discrete-time Fourier transforms

$$
W\left(e^{j \omega}\right)=\sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n] e^{-j n \omega}
$$

are real, even, and periodic in ω with period 2π.

- In the following plots, we have normalized the windows to unit d.c. gain:

$$
W\left(e^{j 0}\right)=\sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n]=1
$$

This makes it easier to compare windows.

Windows (as defined in MATLAB)

	Name(s)	Definition	matlab Command	Graph ($M=8$)
	Hann	$w[n]=\left\{\begin{array}{cc}\frac{1}{2}\left[1+\cos \left(\frac{\pi n}{M / 2}\right)\right] \\ 0 & \|n\| \leq M / 2 \\ \|n\|>M / 2\end{array}\right.$	hann (M+1)	
	Hanning	$w[n]=\left\{\begin{array}{cc}\frac{1}{2}\left[1+\cos \left(\frac{\pi n}{M / 2+1}\right)\right] \begin{array}{l}\|n\| \leq M / 2 \\ 00\end{array}\|n\|>M / 2\end{array}\right.$	hanning ($\mathrm{M}+1$)	
	Hamming	$w[n]=\left\{\begin{array}{cc}0.54+0.46 \cos \left(\frac{\pi n}{M / 2}\right) & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2\end{array}\right.$	hamming ($M+1$)	
Miki Lustig UCB. Based on Course Notes by J.M Kahn			Spring 2014, EE123 Digital Signal Processing	

Window Example

,

ω

ω

[^0]: * These two are always a tradeoff - time-frequency uncertainty principle

