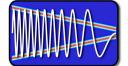


EE123



Digital Signal Processing

Lecture 8 **FFT** Spectral Analysis

based on slides by J.M. Kahn

M. Lustig, EECS UC Berkeley

Announcements

- · Last time:
 - -Started FFT
- Today
 - -Finish FFT
 - -Start Frequency Analysis with DFT
- Read Ch. 10.1-10.2
- Who started playing with the SDR?

M. Lustig, EECS UC Berkeley

- Most FFT algorithms exploit the following properties of W_N^{kn} :
 - Conjugate Symmetry

$$W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$$

• Periodicity in n and k:

$$W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$$

• Power:

$$W_N^2 = W_{N/2}$$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal P

- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms decompose x[n] into successively smaller subsequences.
 - ullet Decimation-in-frequency algorithms decompose X[k] into successively smaller subsequences.
- We mostly discuss decimation-in-time algorithms here.

Assume length of x[n] is power of 2 ($N=2^{\nu}$). If smaller zero-pad to closest power.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc

Decimation-in-Time Fast Fourier Transform

• We start with the DFT

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad k = 0, \dots, N-1$$

• Separate the sum into even and odd terms:

$$X[k] = \sum_{n \text{ even}} x[n]W_N^{kn} + \sum_{n \text{ odd}} x[n]W_N^{kn}$$

These are two DFT's, each with half of the samples.

Decimation-in-Time Fast Fourier Transform

Let n = 2r (n even) and n = 2r + 1 (n odd):

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$
$$= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$$

• Note that:

$$W_N^{2rk} = e^{-j\left(\frac{2\pi}{N}\right)(2rk)} = e^{-j\left(\frac{2\pi}{N/2}\right)rk} = W_{N/2}^{rk}$$

Remember this trick, it will turn up often.

Decimation-in-Time Fast Fourier Transform

Hence:

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$

$$\stackrel{\Delta}{=} G[k] + W_N^k H[k], \quad k = 0, \dots, N-1$$

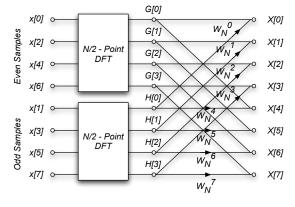
where we have defined:

$$\begin{array}{ll} G[k] & \stackrel{\triangle}{=} & \displaystyle \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} & \Rightarrow \text{DFT of even idx} \\ \\ H[k] & \stackrel{\triangle}{=} & \displaystyle \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk} & \Rightarrow \text{DFT of odd idx} \end{array}$$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing

Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as



Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Po

Decimation-in-Time Fast Fourier Transform

• Both G[k] and H[k] are periodic, with period N/2. For

$$G[k+N/2] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{r(k+N/2)}$$

$$= \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} W_{N/2}^{r(N/2)}$$

$$= \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

$$= G[k]$$

SO

$$G[k + (N/2)] = G[k]$$

 $H[k + (N/2)] = H[k]$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proce

Decimation-in-Time Fast Fourier Transform

- The periodicity of G[k] and H[k] allows us to further simplify.
- For the first N/2 points we calculate G[k] and $W_N^k H[k]$, and then compute the sum

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2}\}.$$

How does periodicity help for $\frac{N}{2} \le k < N$?

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proces

Decimation-in-Time Fast Fourier Transform

$$X[k] = G[k] + W_N^k H[k]$$
 $\forall \{k : 0 \le k < \frac{N}{2}\}.$

• for $\frac{N}{2} \le k < N$:

$$W_N^{k+(N/2)} = ?$$

$$X[k + (N/2)] = ?$$

Decimation-in-Time Fast Fourier Transform

$$X[k + (N/2)] = G[k] - W_N^k H[k]$$

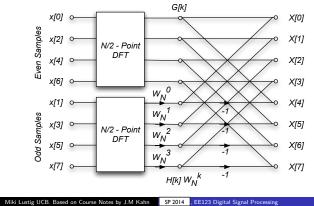
We previously calculated G[k] and $W_N^k H[k]$.

Now we only have to compute their difference to obtain the second half of the spectrum. No additional multiplies are required.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc

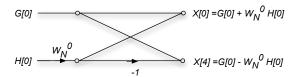
Decimation-in-Time Fast Fourier Transform

• The N-point DFT has been reduced two N/2-point DFTs, plus N/2 complex multiplications. The 8 sample DFT is then:



Decimation-in-Time Fast Fourier Transform

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a butterfly operation, e.g., the computation of X[0] and X[4] from G[0] and H[0]:

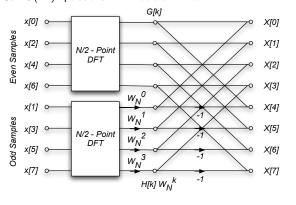


This is an important operation in DSP.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing

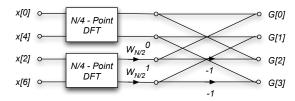
Decimation-in-Time Fast Fourier Transform

• Still $O(N^2)$ operations.... What shall we do?



Decimation-in-Time Fast Fourier Transform

• We can use the same approach for each of the N/2 point DFT's. For the N=8 case, the N/2 DFTs look like



*Note that the inputs have been reordered again.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proce

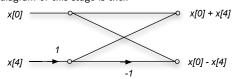
Decimation-in-Time Fast Fourier Transform

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proce

• At this point for the 8 sample DFT, we can replace the N/4 = 2 sample DFT's with a single butterfly. The coefficient is

$$W_{N/4}=W_{8/4}=W_2=e^{-j\pi}=-1$$

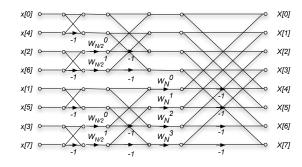
The diagram of this stage is then



Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proce

Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:



This the decimation-in-time FFT algorithm.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc

Decimation-in-Time Fast Fourier Transform

- In general, there are log₂ N stages of decimation-in-time.
- \bullet Each stage requires N/2 complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N/2) \log_2 N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
 - First stage: split into odd and even. Zero low-order bit first
 - Next stage repeats with next zero-lower bit first.
 - Net effect is reversing the bit order of indexes

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processin

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc

Decimation-in-Frequency Fast Fourier Transform

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

If we only look at the even samples of X[k], we can write k = 2r,

$$X[2r] = \sum_{n=0}^{N-1} x[n] W_N^{n(2r)}$$

We split this into two sums, one over the first N/2 samples, and the second of the last N/2 samples.

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n]W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2]W_N^{2r(n+N/2)}$$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing

Decimation-in-Frequency Fast Fourier Transform

But $W_N^{2r(n+N/2)} = W_N^{2rn} W_N^N = W_N^{2rn} = W_{N/2}^{rn}$. We can then write

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

$$= \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2rn}$$

$$= \sum_{n=0}^{(N/2)-1} (x[n] + x[n+N/2]) W_{N/2}^{rn}$$

This is the N/2-length DFT of first and second half of x[n]summed.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proce

Decimation-in-Frequency Fast Fourier Transform

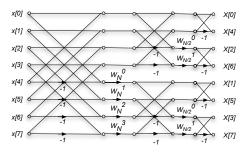
$$\begin{array}{rcl} X[2r] & = & \mathsf{DFT}_{\frac{N}{2}} \left\{ (x[n] + x[n + N/2]) \right\} \\ X[2r+1] & = & \mathsf{DFT}_{\frac{N}{2}} \left\{ (x[n] - x[n + N/2]) \, W_N^n \right\} \\ \end{array}$$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the N/4 DFT's until we reach simple butterflies.

Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as follows



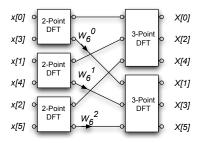
This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Pro

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length *N* is a composite number.

For example, if N = 6, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's



Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Pro

Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so. Many of these exploit the structure for that specific length. For example, a factor of

$$W_N^{N/4} = e^{-j\frac{2\pi}{N}(N/4)} = e^{-j\frac{\pi}{2}} = -j$$
 Why?

just swaps the real and imaginary components of a complex number, and doesn't actually require any multiplies.

Hence a DFT of length 4 doesn't require any complex multiplies. Half of the multiplies of an 8-point DFT also don't require multiplication.

Composite length FFT's can be very efficient for any length that factors into terms of this order.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing

For example N = 693 factors into

$$N = (7)(9)(11)$$

each of which can be implemented efficiently. We would perform

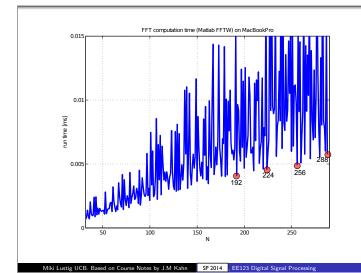
- \bullet 9 \times 11 DFT's of length 7
- ullet 7 imes 11 DFT's of length 9, and
- \bullet 7 \times 9 DFT's of length 11

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc

• Historically, the power-of-two FFTs were much faster (better written and implemented).

- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Proc



FFT as Matrix Operation

$$\begin{pmatrix} x_{[0]} \\ \vdots \\ x_{[k]} \\ \vdots \\ x_{[N-1]} \end{pmatrix} = \begin{pmatrix} w_N^{00} & \cdots & w_N^{0n} & \cdots & w_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_N^{k0} & \cdots & w_N^{kn} & \cdots & w_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_N^{(N-1)0} & \cdots & w_N^{(N-1)n} & \cdots & w_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x_{[0]} \\ \vdots \\ x_{[n]} \\ \vdots \\ x_{[N-1]} \end{pmatrix}$$

• W_N is fully populated $\Rightarrow N^2$ entries.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Pro

FFT as Matrix Operation

$$\begin{pmatrix} x[0] \\ \vdots \\ x[k] \\ \vdots \\ x[N-1] \end{pmatrix} = \begin{pmatrix} W_N^{00} & \cdots & W_N^{0(n} & \cdots & W_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{k0} & \cdots & W_N^{kn} & \cdots & W_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{(N-1)0} & \cdots & W_N^{(N-1)n} & \cdots & W_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{pmatrix}$$

- W_N is fully populated $\Rightarrow N^2$ entries.
- ullet FFT is a decomposition of W_N into a more sparse form:

$$F_N = \left[\begin{array}{cc} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{array} \right] \left[\begin{array}{cc} W_{N/2} & 0 \\ 0 & W_{N/2} \end{array} \right] \left[\begin{array}{cc} \text{Even-Odd Perm.} \\ \text{Matrix} \end{array} \right]$$

ullet $I_{N/2}$ is an identity matrix. $D_{N/2}$ is a diagonal with entries 1, W_N , ..., $W_N^{N/2-1}$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal P

FFT as Matrix Operation

Example: N = 4

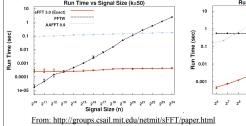
$$F_4 = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & W_4 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -W_4 \end{array} \right] \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right] \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014, EE123 Digital Signal Proces

Beyond NlogN

What if the signal x[n] has a k sparse frequency

- A. Gilbert et. al, "Near-optimal sparse Fourier representations via
- H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
- Others.....
- · O(K Log N) instead of O(N Log N)



Run Time vs Signal Sparsity (N=2²²) M. Lustig, EECS UC Be

Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal and compute the spectrum with the DFT.

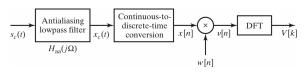
However, there are many important issues and tradeoffs:

- Signal duration vs spectral resolution
- Signal sampling rate vs spectral range
- Spectral sampling rate
- Spectral artifacts

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Pro

Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:



Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Pr

Spectral Analysis with the DFT

Two important tools:

- Applying a window to the input signal reduces spectral
- Padding input signal with zeros increases the spectral sampling

Key Parameters:

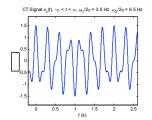
Parameter	Symbol	Units
Sampling interval	T	S
Sampling frequency	$\Omega_s = \frac{2\pi}{T}$	rad/s
Window length	L	unitless
Window duration	$L \cdot T$	S
DFT length	$N \geq L$	unitless
DFT duration	$N \cdot T$	S
Spectral resolution	$\frac{\Omega_s}{I} = \frac{2\pi}{I \cdot T}$	rad/s
Spectral sampling interval	$\frac{\Omega_s}{N} = \frac{2\pi}{N \cdot T}$	rad/s

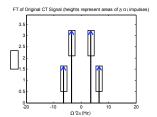
Filtered Continuous-Time Signal

We consider an example:

$$x_c(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

$$X_c(j\Omega) = A_1\pi[\delta(\Omega-\omega_1)+\delta(\Omega+\omega_1)]+A_2\pi[\delta(\Omega-\omega_2)+\delta(\Omega+\omega_2)]$$





Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal H

Sampled Filtered Continuous-Time Signal

Sampled Signal

If we sampled the signal over an infinite time duration, we would

$$x[n] = x_c(t)|_{t=nT}, \quad -\infty < n < \infty$$

described by the discrete-time Fourier transform:

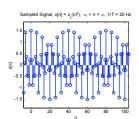
$$X(e^{j\Omega T}) = \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\Omega - r \frac{2\pi}{T} \right) \right), \quad -\infty < \Omega < \infty$$

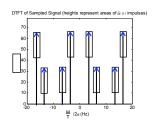
Recall $X(e^{j\omega}) = X(e^{j\Omega T})$, where $\omega = \Omega T$... more in ch 4.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Proces

Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is $\Omega_s/2\pi=1/T=$ 20 Hz, sufficiently high that aliasing does not occur.





Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal P

Windowed Sampled Signal

Block of L Signal Samples

In any real system, we sample only over a finite block of L samples:

$$x[n] = x_c(t)|_{t=nT}, \quad 0 \le n \le L-1$$

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the effect of rectangular and triangular windowing

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Pro

Windowed Sampled Signal

Windowed Block of L Signal Samples

We take the block of signal samples and multiply by a window of duration L, obtaining

$$v[n] = x[n] \cdot w[n], \quad 0 \le n \le L - 1$$

Suppose the window w[n] has DTFT $W(e^{j\omega})$.

Then the windowed block of signal samples has a DTFT given by the periodic convolution between $X(e^{j\omega})$ and $W(e^{j\omega})$:

$$V(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

Windowed Sampled Signal

Convolution with $W(e^{j\omega})$ has two effects in the spectrum:

- It limits the spectral resolution. Main lobes of the DTFT of the window
- 2 The window can produce spectral leakage. Side lobes of the DTFT of the window
- * These two are always a tradeoff time-frequency uncertainty principle

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal P

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Pr

Windows (as defined in MATLAB)

Name(s)	Definition	MATLAB Command	Graph (M = 8)
Rectangular Boxcar Fourier	$w[n] = \begin{cases} 1 & n \le M/2 \\ 0 & n > M/2 \end{cases}$	boxcar(M+1)	boncar(M+1), M = 8
Triangular	$w[n] = \begin{cases} 1 - \frac{ n }{M/2 + 1} & n \le M/2 \\ 0 & n > M/2 \end{cases}$	triang(M+1)	tiang(M+1), M=8
Bartlett	$w[n] = \begin{cases} 1 - \frac{ n }{M/2} & n \le M/2 \\ 0 & n > M/2 \end{cases}$	bartlett(M+1)	barten(M+1), M = 8 1 0.8 \$\frac{1}{8} 0.4 0.4 0.2 0.5 0.5 0.5

Name(s)	Definition	MATLAB Command	Graph (M = 8)
Hann	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hann (M+1)	hamo(M+1), M = 8
Hanning	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2 + 1}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hanning (M+1)	harring(M+1), M = 8 \$\int_{0.8}^{\infty} \begin{picture}(0.4 \\ 0.2 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.7 \\
Hamming	$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi n}{M/2}\right) & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hamming (M+1)	hamming(M+1), M = 8 1 0.8 5 0.4 0.2 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9

Windows

- ullet All of the window functions w[n] are real and even.
- All of the discrete-time Fourier transforms

$$W(e^{j\omega}) = \sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n]e^{-jn\omega}$$

are real, even, and periodic in ω with period $2\pi.$

• In the following plots, we have normalized the windows to unit d.c. gain:

$$W(e^{j0}) = \sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n] = 1$$

This makes it easier to compare windows.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processin

