
M. Lustig,  EECS UC Berkeley

EE123
Digital Signal Processing

Lecture 8
FFT

Spectral Analysis

based on slides by J.M. Kahn



M. Lustig,  EECS UC Berkeley

Announcements

• Last time: 
–Started FFT

• Today 
–Finish FFT
–Start Frequency Analysis with DFT

• Read Ch. 10.1-10.2

• Who started playing with the SDR?



Most FFT algorithms exploit the following properties of W kn

N

:

Conjugate Symmetry

W k(N�n)

N

= W�kn

N

= (W kn

N

)⇤

Periodicity in n and k :

W kn

N

= W k(n+N)

N

= W (k+N)n

N

Power:
W 2

N

= W
N/2
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Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

Decimation-in-time algorithms decompose x [n] into
successively smaller subsequences.
Decimation-in-frequency algorithms decompose X [k] into
successively smaller subsequences.

We mostly discuss decimation-in-time algorithms here.

Assume length of x [n] is power of 2 ( N = 2⌫). If smaller
zero-pad to closest power.
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Decimation-in-Time Fast Fourier Transform

We start with the DFT

X [k] =
N�1X

n=0

x [n]W kn

N

, k = 0, . . . ,N � 1

Separate the sum into even and odd terms:

X [k] =
X

n even

x [n]W kn

N

+
X

n odd

x [n]W kn

N

These are two DFT’s, each with half of the samples.
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Decimation-in-Time Fast Fourier Transform

Let n = 2r (n even) and n = 2r + 1 (n odd):

X [k] =

(N/2)�1X

r=0

x [2r ]W 2rk

N

+

(N/2)�1X

r=0

x [2r + 1]W (2r+1)k

N

=

(N/2)�1X

r=0

x [2r ]W 2rk

N

+W k

N

(N/2)�1X

r=0

x [2r + 1]W 2rk

N

Note that:

W 2rk

N

= e�j( 2⇡
N

)(2rk) = e
�j

⇣
2⇡
N/2

⌘
rk

= W rk

N/2

Remember this trick, it will turn up often.
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Decimation-in-Time Fast Fourier Transform

Hence:

X [k] =

(N/2)�1X

r=0

x [2r ]W rk

N/2 +W k

N

(N/2)�1X

r=0

x [2r + 1]W rk

N/2

�

= G [k] +W k

N

H[k], k = 0, . . . ,N � 1

where we have defined:

G [k]
�

=

(N/2)�1X

r=0

x [2r ]W rk

N/2 ) DFT of even idx

H[k]
�

=

(N/2)�1X

r=0

x [2r + 1]W rk

N/2 ) DFT of odd idx
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Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as
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Decimation-in-Time Fast Fourier Transform

Both G [k] and H[k] are periodic, with period N/2. For
example

G [k + N/2] =

(N/2)�1X

r=0

x [2r ]W r(k+N/2)
N/2

=

(N/2)�1X

r=0

x [2r ]W rk

N/2W
r(N/2)
N/2

=

(N/2)�1X

r=0

x [2r ]W rk

N/2

= G [k]

so

G [k + (N/2)] = G [k]

H[k + (N/2)] = H[k]
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Decimation-in-Time Fast Fourier Transform

The periodicity of G [k] and H[k] allows us to further simplify.
For the first N/2 points we calculate G [k] and W k

N

H[k], and
then compute the sum

X [k] = G [k] +W k

N

H[k] 8{k : 0  k <
N

2
}.

How does periodicity help for N

2

 k < N?
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Decimation-in-Time Fast Fourier Transform

X [k] = G [k] +W k

N

H[k] 8{k : 0  k <
N

2
}.

for N

2

 k < N:

W k+(N/2)
N

=?

X [k + (N/2)] =?
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Decimation-in-Time Fast Fourier Transform

X [k + (N/2)] = G [k]�W k

N

H[k]

We previously calculated G [k] and W k

N

H[k].

Now we only have to compute their di↵erence to obtain the second
half of the spectrum. No additional multiplies are required.
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Decimation-in-Time Fast Fourier Transform

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:
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Decimation-in-Time Fast Fourier Transform

Note that the inputs have been reordered so that the outputs
come out in their proper sequence.
We can define a butterfly operation, e.g., the computation of
X [0] and X [4] from G [0] and H[0]:

G[0] X[0] =G[0] + WN
0 

H[0]

WN
0

-1

H[0] X[4] =G[0] - WN
0 

H[0]

This is an important operation in DSP.
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Decimation-in-Time Fast Fourier Transform

Still O(N2) operations..... What shall we do?
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Decimation-in-Time Fast Fourier Transform

We can use the same approach for each of the N/2 point
DFT’s. For the N = 8 case, the N/2 DFTs look like

x[0]

x[2]

x[4]

x[6]

N/4 - Point 
DFT

G[1]

G[2]

G[3]

N/4 - Point 
DFT

G[0]

WN/2
0

WN/2
1

-1

-1

*Note that the inputs have been reordered again.
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Decimation-in-Time Fast Fourier Transform

At this point for the 8 sample DFT, we can replace the
N/4 = 2 sample DFT’s with a single butterfly.
The coe�cient is

W
N/4 = W

8/4 = W
2

= e�j⇡ = �1

The diagram of this stage is then

-1

x[0]

x[4]

1

x[0] + x[4]

x[0] - x[4]
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Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:
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This the decimation-in-time FFT algorithm.
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Decimation-in-Time Fast Fourier Transform

In general, there are log
2

N stages of decimation-in-time.

Each stage requires N/2 complex multiplications, some of
which are trivial.

The total number of complex multiplications is (N/2) log
2

N.

The order of the input to the decimation-in-time FFT
algorithm must be permuted.

First stage: split into odd and even. Zero low-order bit first
Next stage repeats with next zero-lower bit first.
Net e↵ect is reversing the bit order of indexes
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Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal Binary Bit-Reversed Binary Bit-Reversed Decimal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Decimation-in-Frequency Fast Fourier Transform

The DFT is

X [k] =
N�1X

n=0

x [n]W nk

N

If we only look at the even samples of X [k], we can write k = 2r ,

X [2r ] =
N�1X

n=0

x [n]W n(2r)

N

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N
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Decimation-in-Frequency Fast Fourier Transform

But W 2r(n+N/2)
N

= W 2rn

N

WN

N

= W 2rn

N

= W rn

N/2.
We can then write

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N

=

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2rn

N

=

(N/2)�1X

n=0

(x [n] + x [n + N/2])W rn

N/2

This is the N/2-length DFT of first and second half of x [n]
summed.
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Decimation-in-Frequency Fast Fourier Transform

X [2r ] = DFT
N

2

{(x [n] + x [n + N/2])}

X [2r + 1] = DFT
N

2

{(x [n]� x [n + N/2])W n

N

}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT’s until we reach simple butterflies.
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Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as
follows

x[0]
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1

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
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Non-Power-of-2 FFT’s

A similar argument applies for any length DFT, where the length
N is a composite number.
For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT’s followed by two 3-point DFT’s

x[0]

x[1]

x[3]

x[4]

x[2]

x[5]

2-Point

DFT

2-Point

DFT

2-Point

DFT

3-Point

DFT

3-Point

DFT

W6
0

W6
1

W6
2

X[0]

X[2]

X[4]

X[1]

X[3]

X[5]
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Non-Power-of-2 FFT’s

Good component DFT’s are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

WN/4
N

= e�j

2⇡
N

(N/4) = e�j

⇡
2 = �j Why?

just swaps the real and imaginary components of a complex
number, and doesn’t actually require any multiplies.
Hence a DFT of length 4 doesn’t require any complex multiplies.
Half of the multiplies of an 8-point DFT also don’t require
multiplication.
Composite length FFT’s can be very e�cient for any length that
factors into terms of this order.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014



For example N = 693 factors into

N = (7)(9)(11)

each of which can be implemented e�ciently. We would perform

9⇥ 11 DFT’s of length 7
7⇥ 11 DFT’s of length 9, and
7⇥ 9 DFT’s of length 11
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Historically, the power-of-two FFTs were much faster (better
written and implemented).
For non-power-of-two length, it was faster to zero pad to
power of two.
Recently this has changed. The free FFTW package
implements very e�cient algorithms for almost any filter
length. Matlab has used FFTW since version 6
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FFT as Matrix Operation

0
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N

is fully populated ) N2 entries.

FFT is a decomposition of W
N

into a more sparse form:

F
N

=


I
N/2 D

N/2

I
N/2 �D

N/2

� 
W

N/2 0
0 W

N/2

� 
Even-Odd Perm.

Matrix

�

I
N/2 is an identity matrix. D

N/2 is a diagonal with entries

1, W
N

, · · · ,WN/2�1

N
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FFT as Matrix Operation
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FFT as Matrix Operation

Example: N = 4

F
4

=

2

664

1 0 1 0
0 1 0 W

4

1 0 �1 0
0 1 0 �W

4

3

775

2

664

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

3

775

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775
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M. Lustig,  EECS UC Berkeley

Beyond  NlogN

• What if the signal x[n] has a k sparse frequency
– A. Gilbert et. al, “Near-optimal sparse Fourier representations via 

sampling
– H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”
– Others......

• O(K Log N) instead of O(N Log N)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html



Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal
and compute the spectrum with the DFT.

However, there are many important issues and tradeo↵s:

Signal duration vs spectral resolution
Signal sampling rate vs spectral range
Spectral sampling rate
Spectral artifacts
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Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:
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Spectral Analysis with the DFT

Two important tools:

Applying a window to the input signal – reduces spectral
artifacts
Padding input signal with zeros – increases the spectral
sampling

Key Parameters:

Parameter Symbol Units

Sampling interval T s
Sampling frequency ⌦

s

= 2⇡
T

rad/s
Window length L unitless
Window duration L · T s
DFT length N � L unitless
DFT duration N · T s

Spectral resolution ⌦

s

L

= 2⇡
L·T rad/s

Spectral sampling interval ⌦

s

N

= 2⇡
N·T rad/s
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Filtered Continuous-Time Signal

We consider an example:

x

c

(t) = A

1

cos!
1

t + A

2

cos!
2

t

X

c

(j⌦) = A

1

⇡[�(⌦� !
1

) + �(⌦+ !
1

)] + A

2

⇡[�(⌦� !
2

) + �(⌦+ !
2

)]
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c
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1
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2
/2  = 6.5 Hz
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FT of Original CT Signal (heights represent areas of ( ) impulses)
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Sampled Filtered Continuous-Time Signal

Sampled Signal
If we sampled the signal over an infinite time duration, we would
have:

x [n] = x

c

(t)|
t=nT

, �1 < n < 1

described by the discrete-time Fourier transform:

X (e j⌦T ) =
1

T

1X

r=�1
X

c

✓
j

✓
⌦� r

2⇡

T

◆◆
, �1 < ⌦ < 1

Recall X (e j!) = X (e j⌦T ), where ! = ⌦T ... more in ch 4.
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Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is
⌦
s

/2⇡ = 1/T = 20 Hz, su�ciently high that aliasing does not
occur.

0 20 40 60 80 100
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-0.5

0

0.5
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1.5

n

x[
n
]

Sampled Signal, x[n] = x
c
(nT), -  < n < , 1/T = 20 Hz
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DTFT of Sampled Signal (heights represent areas of ( ) impulses)
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Windowed Sampled Signal

Block of L Signal Samples
In any real system, we sample only over a finite block of L samples:

x [n] = x

c

(t)|
t=nT

, 0  n  L� 1

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the e↵ect of rectangular
and triangular windowing
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Windowed Sampled Signal

Windowed Block of L Signal Samples
We take the block of signal samples and multiply by a window of
duration L, obtaining:

v [n] = x [n] · w [n], 0  n  L� 1

Suppose the window w [n] has DTFT W (e j!).

Then the windowed block of signal samples has a DTFT given by
the periodic convolution between X (e j!) and W (e j!):

V (e j!) =
1

2⇡

Z ⇡

�⇡
X (e j✓)W (e j(!�✓))d✓

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing



Windowed Sampled Signal

Convolution with W (e j!) has two e↵ects in the spectrum:

1 It limits the spectral resolution. – Main lobes of the DTFT of
the window

2 The window can produce spectral leakage. – Side lobes of the
DTFT of the window

* These two are always a tradeo↵ - time-frequency uncertainty
principle
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Windows (as defined in MATLAB)
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Windows (as defined in MATLAB)
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Windows

All of the window functions w [n] are real and even.

All of the discrete-time Fourier transforms

W (e j!) =

M

2X

n=�M

2

w [n]e�jn!

are real, even, and periodic in ! with period 2⇡.

In the following plots, we have normalized the windows to unit
d.c. gain:

W (e j0) =

M

2X

n=�M

2

w [n] = 1

This makes it easier to compare windows.
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Window Example

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

W
(e
j

)

M = 16

Boxcar

Triangular

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

W
(e
j

)

M = 16

Hanning

Hamming

0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

2
0

 l
o

g
1

0
|W

(e
j

)|

M = 16

Boxcar

Triangular

0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

2
0

 l
o

g
1

0
|W

(e
j

)|

M = 16

Hanning

Hamming

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

ωω

ω ω


