

Digital Signal Processing

Lecture 8 FFT Spectral Analysis

based on slides by J.M. Kahn

M. Lustig, EECS UC Berkeley

Announcements

- Last time:
 –Started FFT
- Today
 - –Finish FFT
 - -Start Frequency Analysis with DFT
- Read Ch. 10.1-10.2

• Who started playing with the SDR?

• Most FFT algorithms exploit the following properties of W_N^{kn} :

• Conjugate Symmetry

$$W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$$

• Periodicity in *n* and *k*:

$$W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$$

• Power:

$$W_N^2 = W_{N/2}$$

- Most FFT algorithms decompose the computation of a DFT into successively smaller DFT computations.
 - Decimation-in-time algorithms decompose x[n] into successively smaller subsequences.
 - *Decimation-in-frequency* algorithms decompose X[k] into successively smaller subsequences.
- We mostly discuss <u>decimation-in-time</u> algorithms here.

Assume length of x[n] is power of 2 ($N = 2^{\nu}$). If smaller zero-pad to closest power.

• We start with the DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, \dots, N-1$$

• Separate the sum into even and odd terms:

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{kn} + \sum_{n \text{ odd}} x[n] W_N^{kn}$$

These are two DFT's, each with half of the samples.

Let
$$n = 2r$$
 (n even) and $n = 2r + 1$ (n odd):

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{(2r+1)k}$$
$$= \sum_{r=0}^{(N/2)-1} x[2r] W_N^{2rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_N^{2rk}$$

• Note that:

$$W_N^{2rk} = e^{-j\left(\frac{2\pi}{N}\right)(2rk)} = e^{-j\left(\frac{2\pi}{N/2}\right)rk} = W_{N/2}^{rk}$$

Remember this trick, it will turn up often.

• Hence:

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$
$$\triangleq G[k] + W_N^k H[k], \quad k = 0, \dots, N-1$$

where we have defined:

$$G[k] \stackrel{\Delta}{=} \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} \implies \text{DFT of even idx}$$
$$H[k] \stackrel{\Delta}{=} \sum_{r=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk} \implies \text{DFT of odd idx}$$

An 8 sample DFT can then be diagrammed as

 Both G[k] and H[k] are periodic, with period N/2. For example

$$G[k + N/2] = \sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{r(k+N/2)}$$

=
$$\sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} W_{N/2}^{r(N/2)}$$

=
$$\sum_{r=0}^{(N/2)-1} x[2r] W_{N/2}^{rk}$$

=
$$G[k]$$

SO

$$G[k + (N/2)] = G[k]$$

 $H[k + (N/2)] = H[k]$

The periodicity of G[k] and H[k] allows us to further simplify.
For the first N/2 points we calculate G[k] and W^k_NH[k], and then compute the sum

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2}\}.$$

A /

How does periodicity help for $\frac{N}{2} \le k < N$?

$$X[k] = G[k] + W_N^k H[k] \qquad \forall \{k : 0 \le k < \frac{N}{2} \}.$$

• for $\frac{N}{2} \le k < N$:

$$W_N^{k+(N/2)} = ?$$

X[k + (N/2)] = ?

$$X[k + (N/2)] = G[k] - W_N^k H[k]$$

We previously calculated G[k] and $W_N^k H[k]$.

Now we only have to compute their difference to obtain the second half of the spectrum. No additional multiplies are required.

• The *N*-point DFT has been reduced two *N*/2-point DFTs, plus *N*/2 complex multiplications. The 8 sample DFT is then:

- Note that the inputs have been reordered so that the outputs come out in their proper sequence.
- We can define a *butterfly operation*, e.g., the computation of X[0] and X[4] from G[0] and H[0]:

This is an important operation in DSP.

• Still $O(N^2)$ operations..... What shall we do?

• We can use the same approach for each of the N/2 point DFT's. For the N = 8 case, the N/2 DFTs look like

*Note that the inputs have been reordered again.

 At this point for the 8 sample DFT, we can replace the N/4 = 2 sample DFT's with a single butterfly. The coefficient is

$$W_{N/4} = W_{8/4} = W_2 = e^{-j\pi} = -1$$

The diagram of this stage is then

Combining all these stages, the diagram for the 8 sample DFT is:

This the decimation-in-time FFT algorithm.

- In general, there are $\log_2 N$ stages of decimation-in-time.
- Each stage requires N/2 complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N/2) \log_2 N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
 - First stage: split into odd and even. Zero low-order bit first
 - Next stage repeats with next zero-lower bit first.
 - Net effect is reversing the bit order of indexes

This is illustrated in the following table for N = 8.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

If we only look at the even samples of X[k], we can write k = 2r,

$$X[2r] = \sum_{n=0}^{N-1} x[n] W_N^{n(2r)}$$

We split this into two sums, one over the first N/2 samples, and the second of the last N/2 samples.

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

But
$$W_N^{2r(n+N/2)} = W_N^{2rn} W_N^N = W_N^{2rn} = W_{N/2}^{rn}$$
.
We can then write

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

=
$$\sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2rn}$$

=
$$\sum_{n=0}^{(N/2)-1} (x[n] + x[n+N/2]) W_{N/2}^{rn}$$

This is the N/2-length DFT of first and second half of x[n] summed.

$$X[2r] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] + x[n + N/2]) \}$$
$$X[2r+1] = \mathsf{DFT}_{\frac{N}{2}} \{ (x[n] - x[n + N/2]) W_N^n \}$$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the N/4 DFT's until we reach simple butterflies.

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed! The inputs are in normal order, and the outputs are bit reversed.

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length N is a composite number.

For example, if N = 6, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's

Good component DFT's are available for lengths up to 20 or so. Many of these exploit the structure for that specific length. For example, a factor of

$$W_N^{N/4} = e^{-j\frac{2\pi}{N}(N/4)} = e^{-j\frac{\pi}{2}} = -j$$
 Why?

just swaps the real and imaginary components of a complex number, and doesn't actually require any multiplies. Hence a DFT of length 4 doesn't require any complex multiplies.

Half of the multiplies of an 8-point DFT also don't require multiplication.

Composite length FFT's can be very efficient for any length that factors into terms of this order.

For example N = 693 factors into

$$N = (7)(9)(11)$$

each of which can be implemented efficiently. We would perform

- 9×11 DFT's of length 7
- 7×11 DFT's of length 9, and
- 7×9 DFT's of length 11

- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing

FFT as Matrix Operation

• W_N is fully populated $\Rightarrow N^2$ entries.

FFT as Matrix Operation

$$\begin{pmatrix} X[0] \\ \vdots \\ X[k] \\ \vdots \\ X[N-1] \end{pmatrix} = \begin{pmatrix} W_N^{00} & \cdots & W_N^{0n} & \cdots & W_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{k0} & \cdots & W_N^{kn} & \cdots & W_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{(N-1)0} & \cdots & W_N^{(N-1)n} & \cdots & W_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{pmatrix}$$

- W_N is fully populated $\Rightarrow N^2$ entries.
- FFT is a decomposition of W_N into a more sparse form:

$$F_{N} = \begin{bmatrix} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{bmatrix} \begin{bmatrix} W_{N/2} & 0 \\ 0 & W_{N/2} \end{bmatrix} \begin{bmatrix} \text{Even-Odd Perm.} \\ \text{Matrix} \end{bmatrix}$$

•
$$I_{N/2}$$
 is an identity matrix. $D_{N/2}$ is a diagonal with entries
1, W_N , \cdots , $W_N^{N/2-1}$

Example: N = 4

$$F_4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & W_4 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -W_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Beyond NlogN

- What if the signal x[n] has a k sparse frequency
 - A. Gilbert et. al, "Near-optimal sparse Fourier representations via sampling
 - H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
 - Others.....
- O(K Log N) instead of O(N Log N)

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal and compute the spectrum with the DFT.

However, there are many important issues and tradeoffs:

- Signal duration vs spectral resolution
- Signal sampling rate vs spectral range
- Spectral sampling rate
- Spectral artifacts

Consider these steps of processing continuous-time signals:

Spectral Analysis with the DFT

Two important tools:

- Applying a window to the input signal reduces spectral artifacts
- Padding input signal with zeros increases the spectral sampling

Key Parameters:

Parameter	Symbol	Units
Sampling interval	Т	S
Sampling frequency	$\Omega_{s}=rac{2\pi}{T}$	rad/s
Window length	L	unitless
Window duration	$L \cdot T$	S
DFT length	$N \ge L$	unitless
DFT duration	$N \cdot T$	S
Spectral resolution	$\frac{\Omega_s}{I} = \frac{2\pi}{I \cdot T}$	rad/s
Spectral sampling interval	$\frac{\overline{\Omega_s}}{N} = \frac{2\pi}{N \cdot T}$	rad/s

Filtered Continuous-Time Signal

We consider an example:

 $\begin{aligned} x_c(t) &= A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \\ X_c(j\Omega) &= A_1 \pi [\delta(\Omega - \omega_1) + \delta(\Omega + \omega_1)] + A_2 \pi [\delta(\Omega - \omega_2) + \delta(\Omega + \omega_2)] \end{aligned}$

Sampled Signal

If we sampled the signal over an infinite time duration, we would have:

$$x[n] = x_c(t)|_{t=nT}, \quad -\infty < n < \infty$$

described by the discrete-time Fourier transform:

$$X(e^{j\Omega T}) = \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\Omega - r \frac{2\pi}{T} \right) \right), \quad -\infty < \Omega < \infty$$

Recall $X(e^{j\omega}) = X(e^{j\Omega T})$, where $\omega = \Omega T$... more in ch 4.

Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is $\Omega_s/2\pi = 1/T = 20$ Hz, sufficiently high that aliasing does not occur.

DTFT of Sampled Signal (heights represent areas of $\delta(\Omega)$ impulses)

Block of *L* **Signal Samples**

In any real system, we sample only over a finite block of L samples:

$$x[n] = x_c(t)|_{t=nT}, \quad 0 \le n \le L-1$$

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the effect of rectangular and triangular windowing

Windowed Block of *L* Signal Samples

We take the block of signal samples and multiply by a window of duration L, obtaining:

$$v[n] = x[n] \cdot w[n], \quad 0 \le n \le L - 1$$

Suppose the window w[n] has DTFT $W(e^{j\omega})$.

Then the windowed block of signal samples has a DTFT given by the periodic convolution between $X(e^{j\omega})$ and $W(e^{j\omega})$:

$$V(e^{j\omega}) = rac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega- heta)}) d heta$$

Convolution with $W(e^{j\omega})$ has two effects in the spectrum:

- It limits the spectral resolution. Main lobes of the DTFT of the window
- The window can produce spectral leakage. Side lobes of the DTFT of the window

* These two are always a tradeoff - time-frequency uncertainty principle

Windows (as defined in MATLAB)

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 201

Spring 2014, EE123 Digital Signal Processing

Windows (as defined in MATLAB)

	Name(s)	Definition	MATLAB Command	Graph (<i>M</i> = 8)
	Hann	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hann (M+1)	hann(M+1), $M = 8$ 1 0.8 0.6 0.4 0.2 0 -5 0 0 0 0 0 0 0 0
	Hanning	$w[n] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{\pi n}{M/2 + 1}\right) \right] & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hanning (M+1)	hanning(M+1), $M = 8$
	Hamming	$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{\pi n}{M/2}\right) & n \le M/2 \\ 0 & n > M/2 \end{cases}$	hamming (M+1)	hamming(M+1), $M = 8$ 1 0.8 0.6 0.4 0.2 0-5 0 5 n
Miki Lı	ustig UCB. E	Based on Course Notes by J.M Kahn	Spring 2014, EE12	23 Digital Signal Processing

Windows

- All of the window functions w[n] are real and even.
- All of the discrete-time Fourier transforms

$$W(e^{j\omega}) = \sum_{n=-rac{M}{2}}^{rac{M}{2}} w[n]e^{-jn\omega}$$

are real, even, and periodic in ω with period 2π .

 In the following plots, we have normalized the windows to unit d.c. gain:

$$W(e^{j0}) = \sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n] = 1$$

This makes it easier to compare windows.

Window Example

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 20

Spring 2014, EE123 Digital Signal Processing