

## Lecture 9

Announcements

- Last time:
- FFT
- Today:
- Frequency analysis with DFT
- Windowing
- Effect of zero-padding


## Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal and compute the spectrum with the DFT.

However, there are many important issues and tradeoffs:

- Signal duration vs spectral resolution
- Signal sampling rate vs spectral range
- Spectral sampling rate
- Spectral artifacts


## Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:


## Spectral Analysis with the DFT

Two important tools:

- Applying a window to the input signal - reduces spectral artifacts
- Padding input signal with zeros - increases the spectral sampling
Key Parameters:

| Parameter | Symbol | Units |
| :--- | :---: | :---: |
| Sampling interval | $T$ | s |
| Sampling frequency | $\Omega_{s}=\frac{2 \pi}{T}$ | $\mathrm{rad} / \mathrm{s}$ |
| Window length | $L$ | unitless |
| Window duration | $L \cdot T$ | s |
| DFT length | $N \geq L$ | unitless |
| DFT duration | $N \cdot T$ | s |
| Spectral resolution | $\frac{\Omega_{s}}{L}=\frac{2 \pi}{L \cdot T}$ | $\mathrm{rad} / \mathrm{s}$ |
| Spectral sampling interval | $\frac{\Omega_{s}}{N}=\frac{2 \pi}{N \cdot T}$ | $\mathrm{rad} / \mathrm{s}$ |

## Filtered Continuous-Time Signal

We consider an example:

$$
\begin{aligned}
x_{c}(t) & =A_{1} \cos \omega_{1} t+A_{2} \cos \omega_{2} t \\
X_{c}(j \Omega) & =A_{1} \pi\left[\delta\left(\Omega-\omega_{1}\right)+\delta\left(\Omega+\omega_{1}\right)\right]+A_{2} \pi\left[\delta\left(\Omega-\omega_{2}\right)+\delta\left(\Omega+\omega_{2}\right) .\right.
\end{aligned}
$$



FT of Original CT Signal (heights represent areas of $\delta(\Omega)$ impulses)


## Sampled Filtered Continuous-Time Signal

## Sampled Signal

If we sampled the signal over an infinite time duration, we would have:

$$
x[n]=\left.x_{c}(t)\right|_{t=n T}, \quad-\infty<n<\infty
$$

described by the discrete-time Fourier transform:

$$
X\left(e^{j \Omega T}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{c}\left(j\left(\Omega-r \frac{2 \pi}{T}\right)\right), \quad-\infty<\Omega<\infty
$$

Recall $X\left(e^{j \omega}\right)=X\left(e^{j \Omega T}\right)$, where $\omega=\Omega T \ldots$ more in ch 4 .

## Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is $\Omega_{s} / 2 \pi=1 / T=20 \mathrm{~Hz}$, sufficiently high that aliasing does not occur.


DTFT of Sampled Signal (heights represent areas of $\delta(\Omega)$ impulses)


## Windowed Sampled Signal

## Block of L Signal Samples

In any real system, we sample only over a finite block of $L$ samples:

$$
x[n]=\left.x_{c}(t)\right|_{t=n T}, \quad 0 \leq n \leq L-1
$$

This simply corresponds to a rectangular window of duration $L$.
Recall: in Homework 1 we explored the effect of rectangular and triangular windowing

## Windowed Sampled Signal

## Windowed Block of L Signal Samples

We take the block of signal samples and multiply by a window of duration $L$, obtaining:

$$
v[n]=x[n] \cdot w[n], \quad 0 \leq n \leq L-1
$$

Suppose the window $w[n]$ has DTFT $W\left(e^{j \omega}\right)$.

Then the windowed block of signal samples has a DTFT given by the periodic convolution between $X\left(e^{j \omega}\right)$ and $W\left(e^{j \omega}\right)$ :

$$
V\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) W\left(e^{j(\omega-\theta)}\right) d \theta
$$

## Windowed Sampled Signal

Convolution with $W\left(e^{j \omega}\right)$ has two effects in the spectrum:
(1) It limits the spectral resolution. - Main lobes of the DTFT of the window
(2) The window can produce spectral leakage. - Side lobes of the DTFT of the window

* These two are always a tradeoff - time-frequency uncertainty principle


## Windows (as defined in MATLAB)

| Name(s) | Definition | MATLAB Command | Graph ( $M=8$ ) |
| :---: | :---: | :---: | :---: |
| Rectangular Boxcar Fourier | $w[n]= \begin{cases}1 & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2\end{cases}$ | boxcar (M+1) |  |
| Triangular | $w[n]=\left\{\begin{array}{cc}1-\frac{\|n\|}{M / 2+1} & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2\end{array}\right.$ | triang ( $\mathrm{M}+1$ ) |  |
| Bartlett | $w[n]=\left\{\begin{array}{cc}1-\frac{\|n\|}{M / 2} & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2\end{array}\right.$ | bartlett (M+1) |  |

## Windows (as defined in MATLAB)

| Name(s) | Definition | MATLAB Command | Graph ( $M=8$ ) |
| :---: | :---: | :---: | :---: |
| Hann | $w[n]=\left\{\begin{array}{cc} \frac{1}{2}\left[1+\cos \left(\frac{\pi n}{M / 2}\right)\right] & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2 \end{array}\right.$ | hann ( $\mathrm{M}+1$ ) | hann( $M+1$ ), $M=8$ |
| Hanning | $w[n]=\left\{\begin{array}{cl} \frac{1}{2}\left[1+\cos \left(\frac{\pi n}{M / 2+1}\right)\right] & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2 \end{array}\right.$ | hanning ( $\mathrm{M}+1$ ) |  |
| Hamming | $w[n]=\left\{\begin{array}{cl}0.54+0.46 \cos \left(\frac{\pi n}{M / 2}\right) & \|n\| \leq M / 2 \\ 0 & \|n\|>M / 2\end{array}\right.$ | hamming ( $\mathrm{M}+1$ ) | hamming $(M+1), M=8$ |

## Windows

- All of the window functions $w[n]$ are real and even.
- All of the discrete-time Fourier transforms

$$
W\left(e^{j \omega}\right)=\sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n] e^{-j n \omega}
$$

are real, even, and periodic in $\omega$ with period $2 \pi$.

- In the following plots, we have normalized the windows to unit d.c. gain:

$$
W\left(e^{j 0}\right)=\sum_{n=-\frac{M}{2}}^{\frac{M}{2}} w[n]=1
$$

This makes it easier to compare windows.

## Window Example



## Windows Properties

These are characteristic of the window type

| Window | Main-lobe | Sidelobe $\delta_{s}$ | Sidelobe $-20 \log _{10} \delta_{s}$ |
| :---: | :---: | :---: | :---: |
| Rect | $\frac{4 \pi}{M_{8}+1}$ | 0.09 | 21 |
| Bartlett | $\frac{8 \pi}{M+1}$ | 0.05 | 26 |
| Hann | $\frac{8 \pi}{M+1}$ | 0.0063 | 44 |
| Hamming | $\frac{8 \pi}{M+1}$ | 0.0022 | 53 |
| Blackman | $\frac{12 \pi}{M+1}$ | 0.0002 | 74 |

Most of these (Bartlett, Hann, Hamming) have a transition width that is twice that of the rect window.

Warning: Always check what's the definition of M

Adapted from A Course In Digital Signal Processing by Boaz Porat, Wiley, 1997

## Windows Examples

Here we consider several examples. As before, the sampling rate is $\Omega_{s} / 2 \pi=1 / T=20 \mathrm{~Hz}$. Rectangular Window, $L=32$




## Windows Examples

Triangular Window, $L=32$


Sampled, Windowed Signal, Triangular Window, $L=32$



## Windows Examples

Hamming Window, $L=32$


Sampled, Windowed Signal, Hamming Window, $L=32$



DTFT of Sampled, Windowed Signal


## Windows Examples

Hamming Window, $L=64$


Miki Lustig UCB. Based on Course Notes by J.M Kahn

Optimal Window: Kaiser

- Minimum main-lobe width for a given sidelobe energy \%

$$
\frac{\int_{\text {sidelobes }}\left|H\left(e^{j \omega}\right)\right|^{2} d \omega}{\int_{-\pi}^{\pi}\left|H\left(e^{j \omega}\right)\right|^{2} d \omega}
$$

- Window is parametrized with $L$ and $\beta$ os Eq 10.12 - $\beta$ determines side-lobe level - L determines main-lobe width


## Example

$$
y=\sin (2 \pi 0.1992 n)+0.005 \sin (2 \pi 0.25 n) \quad \mid 0 \leq n<128
$$



Triangle



## Example






## Zero-Padding

- In preparation for taking an $N$-point DFT, we may zero-pad the windowed block of signal samples to a block length $N \geq L$ :

$$
\begin{cases}v[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq N-1\end{cases}
$$

- This zero-padding has no effect on the DTFT of $v[n]$, since the DTFT is computed by summing over $-\infty<n<\infty$.

Effect of Zero Padding

- We take the $N$-point DFT of the zero-padded $v[n]$, to obtain the block of $N$ spectral samples:

$$
V[k], \quad 0 \leq k \leq N-1
$$

## Zero-Padding

- Consider the DTFT of the zero-padded $v[n]$. Since the zero-padded $v[n]$ is of length $N$, its DTFT can be written:

$$
V\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} v[n] e^{-j n \omega}, \quad-\infty<\omega<\infty
$$

The $N$-point DFT of $v[n]$ is given by:

$$
V[k]=\sum_{n=0}^{N-1} v[n] W_{N}^{k n}=\sum_{n=0}^{N-1} v[n] e^{-j(2 \pi / N) n k}, \quad 0 \leq k \leq N-1
$$

We see that $V[k]$ corresponds to the samples of $V\left(e^{j \omega}\right)$ :

$$
V[k]=\left.V\left(e^{j \omega}\right)\right|_{\omega=k \frac{2 \pi}{N}}, \quad 0 \leq k \leq N-1
$$

To obtain samples at more closely spaced frequencies, we zero-pad $v[n]$ to longer block length $N$. The spectrum is the same, we just have more samples.

## Frequency Analysis with DFT

- Note that the ordering of the DFT samples is unusual.

$$
V[k]=\sum_{n=0}^{N-1} v[n] W_{N}^{n k}
$$

The DC sample of the DFT is $k=0$

$$
V[0]=\sum_{n=0}^{N-1} v[n] W_{N}^{0 n}=\sum_{n=0}^{N-1} v[n]
$$

- The positive frequencies are the first $N / 2$ samples
- The first $N / 2$ negative frequencies are circularly shifted

$$
((-k))_{N}=N-k
$$

so they are the last $N / 2$ samples. (Use fftshift to reorder)

## Frequency Analysis with DFT Examples:

Hamming Window, $L=32, N=32$


Spectrum of Sampled, Windowed, Zero-Padded Signal


## Frequency Analysis with DFT Examples:

Hamming Window, $L=32$, Zero-Padded to $N=64$

Sampled, Windowed Signal, Hamming Window, $L=32$, Zero-Padded to $N=64$

$N$-Point DFT of Sampled, Windowed, Zero-Padded Signal

Spectrum of Sampled, Windowed, Zero-Padded Signal





A 40 yo pt with a history of lower limb weakness referred for mri screening of brain and whole spine for cord. MRI sagittal T2 screening of dorsal region shows a faint uniform linear high signal at the center of the cord. The signal abnormality likely to represent:
(1) Cord demyelination.
(2) Syrinx (spinal cord disease).
(3) Artifact.

## Frequency Analysis with DFT

- Length of window determines spectral resolution
- Type of window determines side-lobe amplitude. (Some windows have better tradeoff between resolution-sidelobe)
- Zero-padding approximates the DTFT better. Does not introduce new information!


## Potential Problems and Solutions

## Potential Problems and Solutions

| Problem | Possible Solutions |
| :--- | :--- |
| 1. Spectral error <br> from aliasing Ch. 4 | a. Filter signal to reduce frequency content above $\Omega_{s} / 2=\pi / T$. <br> b. Increase sampling frequency $\Omega_{s}=2 \pi / T$. |
| 2. Insufficient frequency <br> resolution. | a. Increase $L$ <br> b. Use window having narrow main lobe. |
| 3. Spectral error <br> from leakage | a. Use window having low side lobes. <br> b. Increase $L$ |
| 4. Missing features <br> due to spectral sampling. | a. Increase $L$, <br> b. Increase $N$ by zero-padding $v[n]$ to length $N>L$. |

