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Digital Signal Processing

Lecture 9

based on slides by J.M. Kahn M. Lustig, EECS UC Berkele




Announcements

» Last time:
— FFT
» Today:
— Frequency analysis with DFT
— Windowing
— Effect of zero-padding

M. Lustig, EECS UC Berkeley




Spectral Analysis with the DFT

The DFT can be used to analyze the spectrum of a signal.

It would seem that this should be simple, take a block of the signal
and compute the spectrum with the DFT.

However, there are many important issues and tradeoffs:

@ Signal duration vs spectral resolution
@ Signal sampling rate vs spectral range
@ Spectral sampling rate

@ Spectral artifacts
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Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:

Antialiasin Continuous-to-
5 — discrete-time

lowpass filter : DET
s. (1) x.(1) conversion

Ha(j€2)
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Spectral Analysis with the DFT

Two important tools:

@ Applying a window to the input signal — reduces spectral

artifacts
@ Padding input signal with zeros — increases the spectral

sampling

Key Parameters:

Parameter Symbol Units
Sampling interval T S
Sampling frequency Qs = 27” rad/s
Window length L unitless
Window duration L-T S
DFT length N> L unitless
DFT duration N-T S
Spectral resolution = 2T | rad/s
Spectral sampling interval % — % rad/s
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Filtered Continuous-Time Signal

We consider an example:

xc(t) = Ajcoswit+ Axcoswyt
Xc(2) = Aim[o(Q —w1) 4+ (2 4+ w1)] + Aam[0(Q2 — wo) + (2 + wo)

CT Signal X (t), o0 < 1 < o0, 0,/210= 3.5 Hz, @,/2n = 6.5 Hz FT of Original CT Signal (heights represent areas of §(Q) impulses)
1.5¢ n n 3.5
o - | P
0.5+ rﬁ r\,\ 25+
0r 21
At 1
Iy |
| | L | | | 0 | L |
0 0.5 1 1.5 2 2.5 -20 -10 0 10 20
t(s) Q/2r (Hz)

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing




Sampled Filtered Continuous-Time Signal

Sampled Signal

If we sampled the signal over an infinite time duration, we would
have:

x[n] = xc(t)|t=nT, —00< n< o0

described by the discrete-time Fourier transform:

X(MT) = Zx(( —r277_T)>, —00 < Q2 < 00

r=—0oo

Recall X(e/*) = X(&/*?T), where w = QT ... more in ch 4.
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Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is
Qs /2w =1/ T = 20 Hz, sufficiently high that aliasing does not

OCCur.

Sampled Signal, x[n] = xC(nT), -0 <n<ow, 1/T=20Hz

1.5

1H
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DTFT of Sampled Signal (heights represent areas of §(q) impulses)
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Windowed Sampled Signal

Block of L Signal Samples
In any real system, we sample only over a finite block of L samples:

x[n] = xc(t)|t=n7, 0<n<L-—-1

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the effect of rectangular
and triangular windowing
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Windowed Sampled Signal

Windowed Block of L Signal Samples
We take the block of signal samples and multiply by a window of
duration L, obtaining:

vin] = x[n]-w[n], 0<n<L-1

Suppose the window w[n] has DTFT W(e/¥).

Then the windowed block of signal samples has a DTFT given by
the periodic convolution between X(e/*) and W(e/*):

V(e¥) = % /_ ' X(eYW(e“=9)do
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Windowed Sampled Signal

Convolution with W/(e/*) has two effects in the spectrum:
© It limits the spectral resolution. — Main lobes of the DTFT of
the window

© The window can produce spectral leakage. — Side lobes of the
DTFT of the window

* These two are always a tradeoff - time-frequency uncertainty
principle
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Windows (as defined in MATLAB)

Name(s) Definition MATLAB Command Graph (M =38)
boxcar(M+1), M= 8
1 @9 Q-0 PO
0.8
Rectangular 1 |n| <M/2 o6
Boxcar W[n]z 0 ) boxcar (M+1) 5
Fourier In| > M/ 0.4
0.2
0
5 0 5
n
triang(M+1), M= 8
1 2.
|n| 0.8 55 "0_‘_
1- <M/2 = ' ;
Triangular w[n] = M/2+1 |n| / triang (M+1) 5 06
0 In| > M2 04 .
0.2 T T
0 .-‘ | , , , 7 7 '0.‘
5 0 5
n
bartlett(M+1), M= 8
1 ?
4 e g%
- | <M/2 =06 %
Bartlett W[n] = M/2 bartlett (M+1) 5 p
0 |n|>M/2 04
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Windows (as defined in MATLAB)

Name(s) Definition MATLAB Command Graph (M =38)
hann(M+1), M= 8
1 P
1 08 AR
—| 1+ cos| — In|<M/2
Hann w[n] =42 M/2 hann (M+1)
0 |n| >M/2
n
hanning(M+1), M= 8
1 P,
9| ®
{ 0.8 o %
) ~| 1+ cos| — |n|£M/2 . =06 ;
Hanning W[n] =42 M/2+1 hanning (M+1) s { Y
0 In|> M2 04 4
02 F T
o 1| | | &
5 0 5
n
hamming(M+1), M= 8
1 .
0.8 :_¢> 0
T J k
_ 0.54 + 0.46 cos | <M /2 _ =06 : .,
Hamming w[n] = M/2 hamming (M+1) 5 { )
0 n|>M/2 041§
AT
0 ...? | [ . -?...
-5 0 5
n
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@ All of the window functions w[n] are real and even.

@ All of the discrete-time Fourier transforms

M
2

W)= > wlne ™

n:—7

are real, even, and periodic in w with period 2.

@ In the following plots, we have normalized the windows to unit
d.c. gain:

This makes it easier to compare windows.
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Windows Properties

These are characteristic of the window type

Window | Main-lobe Sidelobe 05 Sidelobe —20log;q ds
4
Rect . 21
ec M8+ ] 0.09
Bartlett T 0.05 26
M8—|— 1
Hann T 0.0063 44
M8+ 1
i
H ' .0022
amming /\412+ ] 0.00 53
T
Black 0.0002 74
ackman M1

Miki Lustig UCB. Based on Course Notes by J.M Kahn

Warning: Always check what's the definition of M

Adapted from A Course In Digital Signal Processing by Boaz Porat, Wiley, 1997

Most of these (Bartlett, Hann, Hamming) have a transition width
that is twice that of the rect window.
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Windows Examples

Here we consider several examples. As before, the sampling rate is
Qs/2m =1/T = 20 Hz.
Rectangular Window, L = 32

Rectangular Window, L = 32 DTFT of Rectangular Window

127 40
35+
100000000000000000000000000000000
30
0.8 25
g 0.6 20
15
0.4
10
0.2
0
0 5 10 15 20 25 30

w
n T /2n(Hz)

Sampled, Windowed Signal, Rectangular Window, L = 32 DTFT of Sampled, Windowed Signal
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Windows Examples

Triangular Window, L = 32

Triangular Window, L = 32
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Sampled, Windowed Signal, Triangular Window, L = 32
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DTFT of Triangular Window
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DTFT of Sampled, Windowed Signal
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Hamming Window, [ = 32

Hamming Window, L = 32
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Sampled, Windowed Signal, Hamming Window, L = 32

1.5+

1t

0.5¢

-

)
0 000
-0.5+

vn]

éld

l

Lo Jl. (e
& |4

d’f%@c

A4

Miki Lustig UCB. Based on Course Notes by J.M Kahn

DTFT of Hamming Window

Windows Examples

20+
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DTFT of Sampled, Windowed Signal
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Windows Examples

Hamming Window, L = 64

Hamming Window, L = 64
1.2+ ‘ ‘ ‘ ‘ l "]

0.8} |
B3 0.6 Q % 4
0.4+ E

0.2+ ]

0 10 20 30 40 50 60
n

Sampled, Windowed Signal, Hamming Window, L = 64

1.5+ R
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Optimal Window: Kaiser

» Minimum main-lobe width for a given side-
lobe energy %

fsidelobes ‘H(ejw) ‘de
J7 [H(e7%)|2dw

* Window is parametrized with L and 3 0s Eq10.12
— B determines side-lobe level
— L determines main-lobe width

M. Lustig, EECS UC Berkeley




Example

y = sin(270.1992n) + 0.005sin(270.25n) | 0 < n < 128

0 lRect
=10}
20}
=30}
-40
-50
—60 |
-70}
_80 ! ! 1 ! ! |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
rad
Triangle
. AAAAAAAAAAAAN
1.5 2.0 2.5 3.0
rad
Hamming

Y
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Example

Hamming

db

| I |
~No A
(=) (=) (=) (=)
T T T
L1

-80 L PaAY /\[\ﬂ 1 1 /\/\ JANN I I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0

rad

0 Kaiser Beta=6

: NNNANNNNNNNNNNANNT]

15 2.0 2.5 3.0
rad

0 Kaiser Beta=9

db
L T I B |
LU A WN
coooooo
T T T T T T T
1 L L 1 L L 1

0.0 0.5 1.0 15 2.0 2.5 3.0
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/Zero-Padding

@ In preparation for taking an N-point DFT, we may zero-pad
the windowed block of signal samples to a block length N > L:

vin] 0<n<L-1
0 L<n<N-1

@ This zero-padding has no effect on the DTFT of v[n], since
the DTFT is computed by summing over —oo < n < o0.

Effect of Zero Padding

@ We take the N-point DFT of the zero-padded v|[n], to obtain
the block of N spectral samples:

VK], 0<k<N-1
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/Zero-Padding

@ Consider the DTFT of the zero-padded v|[n]. Since the
zero-padded v[n] is of length N, its DTFT can be written:

N—1
V() = Z v[nle ™,  —oco < w < 0
n=0
The N-point DFT of v[n] is given by:
N—1 N—1 |
VIK = vinlWg" =D v[n]e /M o< k< N—1
n=0 n=0

We see that V/[k] corresponds to the samples of V/(e/¥):

VK| = V()| _ 2=, 0<k<N-1
N

To obtain samples at more closely spaced frequencies, we
zero-pad v|[n] to longer block length N. The spectrum is the
same, we just have more samples.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing




Frequency Analysis with DFT

@ Note that the ordering of the DFT samples is unusual.

N—-1

VK] =) v[n] Wik

n=0

The DC sample of the DFT is k=10

N—1 N—1
V[0] = > vin]WR" =) v[n]
n=0 n=0

@ The positive frequencies are the first N /2 samples
e The first N/2 negative frequencies are circularly shifted

((=Kk))n =N —k

so they are the last N /2 samples. (Use fftshift to reorder)
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1.5¢

0.5¢

Zero-Padded v[n]

Hamming Window, L =32, N = 32

Sampled, Windowed Signal, Hamming Window, L = 32, Zero-Padded to N = 32
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Frequency Analysis with DFT Examples:

N-Point DFT of Sampled, Windowed, Zero-Padded Signal

IVIK]I

To 00000002 ?OT

0 5

Spectrum of Sampled, Windowed, Zero-Padded Signal

10 15 20 25

n

...... |V(ej°’T)|
fo) |VIK]I, 0, = k2n/NT
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Frequency Analysis with DFT Examples:

Hamming Window, L = 32, Zero-Padded to N = 64

Sampled, Windowed Signal, Hamming Window, L = 32, Zero-Padded to N = 64 N-Point DFT of Sampled, Windowed, Zero-Padded Signal
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Spectrum of Sampled, Windowed, Zero-Padded Signal
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A 40 yo pt with a history of lower limb weakness referred for mri
screening of brain and whole spine for cord. MRI sagittal T2 screening
of dorsal region shows a faint uniform linear high signal at the center of
the cord. The signal abnormality likely to represent:

(1) Cord demyelination.

g; iytf;mét(spi“a' cord disease). Answer : Its an artifact, known as truncation or Gibbs artifact
ruaract.

http://www.neuroradiologycases.com




Frequency Analysis with DFT

@ Length of window determines spectral resolution

@ Type of window determines side-lobe amplitude.
(Some windows have better tradeoff between
resolution-sidelobe)

@ Zero-padding approximates the DTFT better. Does not
introduce new information!
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Potential Problems and Solutions

Potential Problems and Solutions

Problem Possible Solutions

1. Spectral error a. Filter signal to reduce frequency content above Qs/2 =7/T.
from aliasing Ch.4 b. Increase sampling frequency Qs =27/ T.

2. Insufficient frequency a. Increase L

resolution. b. Use window having narrow main lobe.

3. Spectral error a. Use window having low side lobes.

from leakage b. Increase L

4. Missing features a. Increase L,

due to spectral sampling. | b. Increase N by zero-padding v[n] to length N > L.
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