

Lecture 10

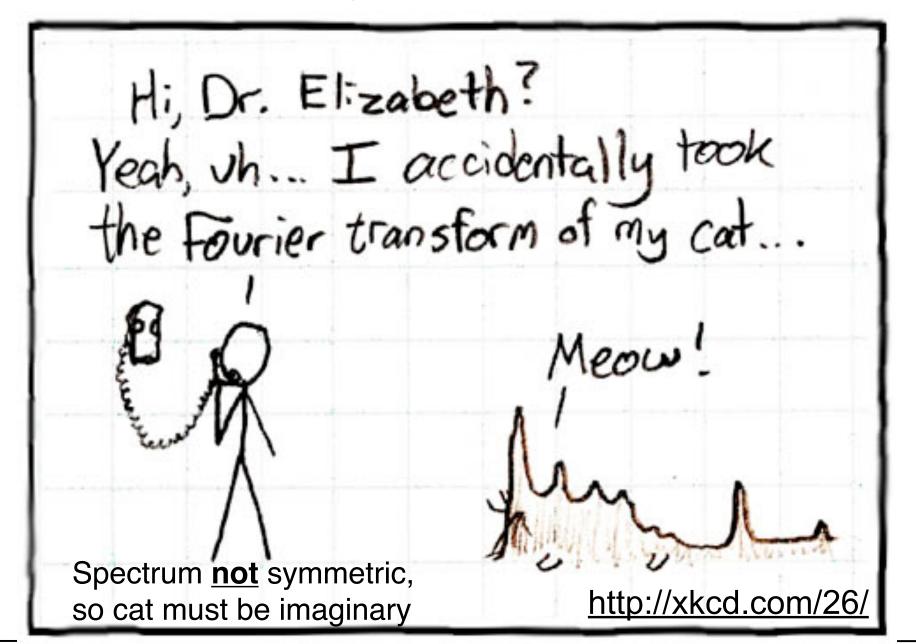
Announcements

- Midterm: Friday next week
 - Open everything
 - but cheat sheet recommended instead
 - Who can not stay till 5pm?

- Optional homework next week
 - Will give you midterm and practice questions

How's lab I going?

How do you know this guy is insane?



Last Time

- Frequency Analysis with DFT
- Windowing
- Zero-Padding
- Today:
 - Time-Dependent Fourier Transform
 - Heisenberg Boxes

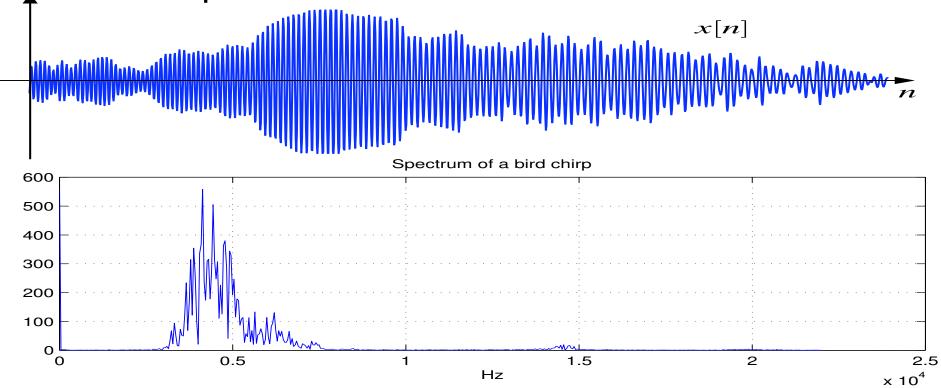
Discrete Transforms (Finite)

- DFT is only one out of a LARGE class of transforms
- Used for:
 - -Analysis
 - -Compression
 - -Denoising
 - -Detection
 - -Recognition
 - -Approximation (Sparse)

Sparse representation has been one of the hottest research topics in the last 15 years in sp

Example of spectral analysis

- Spectrum of a bird chirping
 - Interesting,.... but...
 - Does not tell the whole story



Time Dependent Fourier Transform

 To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$

*Also called Short-time Fourier Transform (STFT)

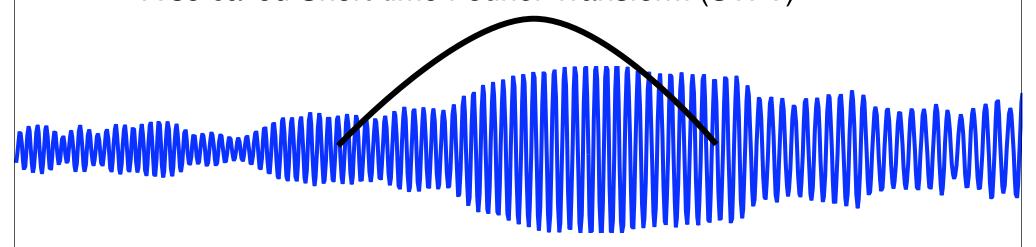
- Mapping from 1D ⇒ 2D, n discrete, w cont.
- Simply slide a window and compute DTFT

Time Dependent Fourier Transform

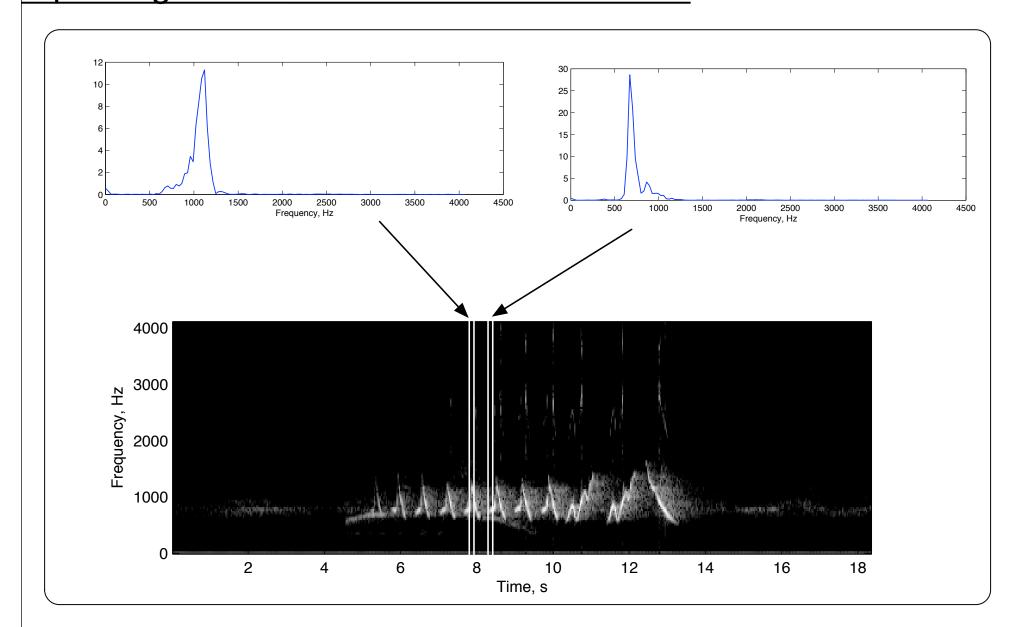
 To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$

*Also called Short-time Fourier Transform (STFT)



Spectrogram



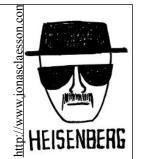
Discrete Time Dependent FT

$$X_r[k] = \sum_{m=0}^{L-1} x[rR + m]w[m]e^{-j2\pi km/N}$$

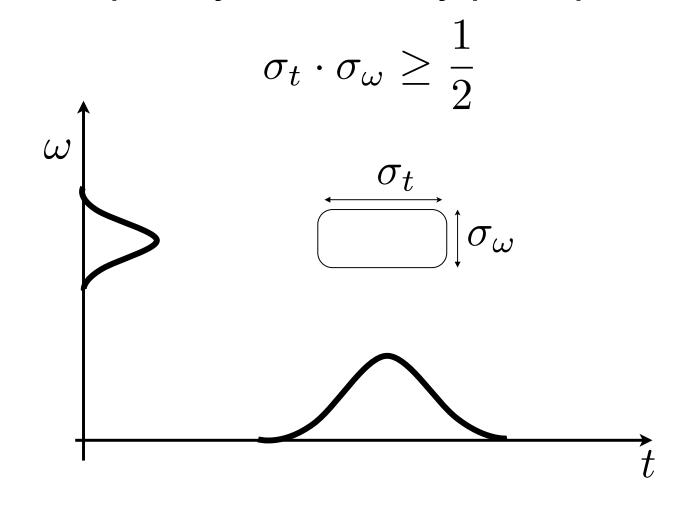
- L Window length
- R Jump of samples
- N DFT length

Tradeoff between time and frequency resolution

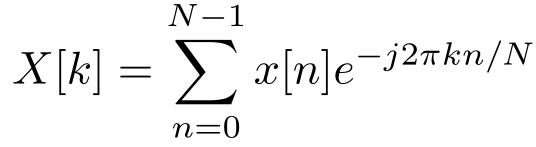
Heisenberg Boxes

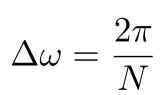


Time-Frequency uncertainty principle



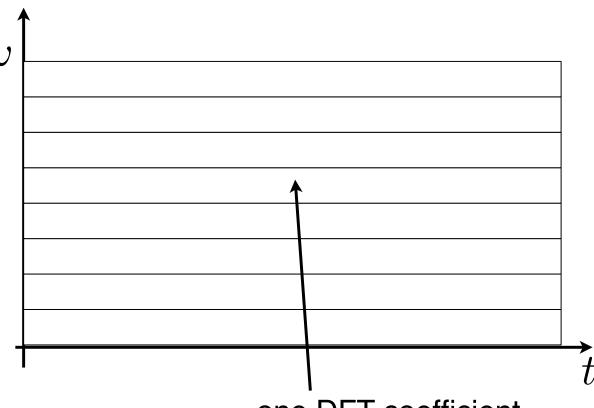
DFT





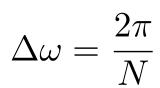
$$\Delta t = N$$

$$\Delta\omega \cdot \Delta t = 2\pi$$



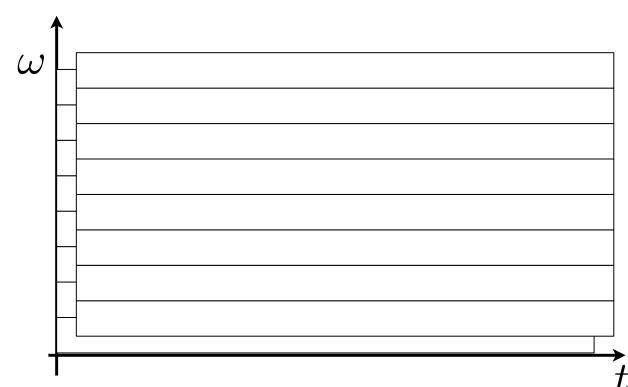
DFT

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$



$$\Delta t = N$$

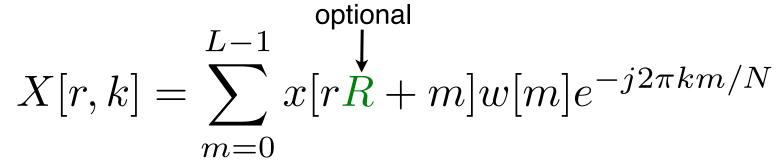
$$\Delta\omega \cdot \Delta t = 2\pi$$

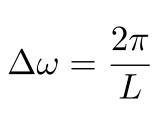


Question: What is the effect of zero-padding?

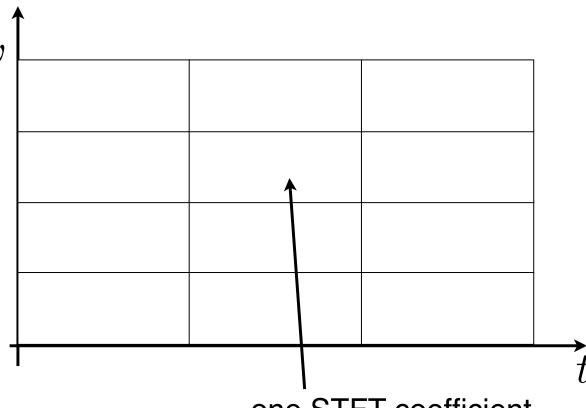
Answer: Overlapped Tiling!

Discrete STFT





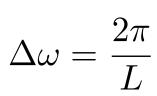
$$\Delta t = L$$



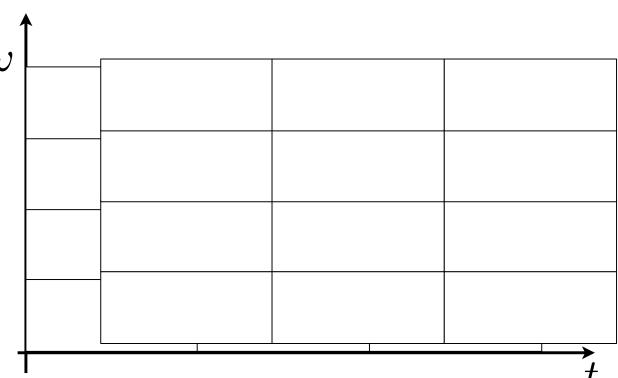
one STFT coefficient

Discrete STFT

$$X[r,k] = \sum_{m=0}^{L-1} x[rR + m]w[m]e^{-j2\pi km/N}$$



$$\Delta t = L$$



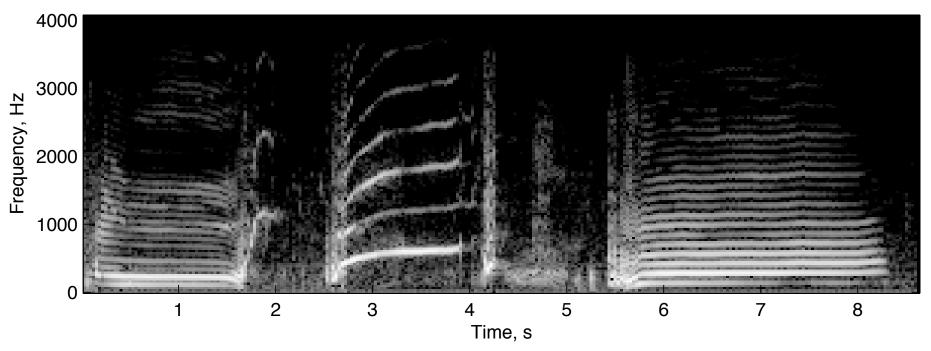
Question: What is the effect of R on tiling? what effect of N?

Answer: Overlapping in time of frequency or both!

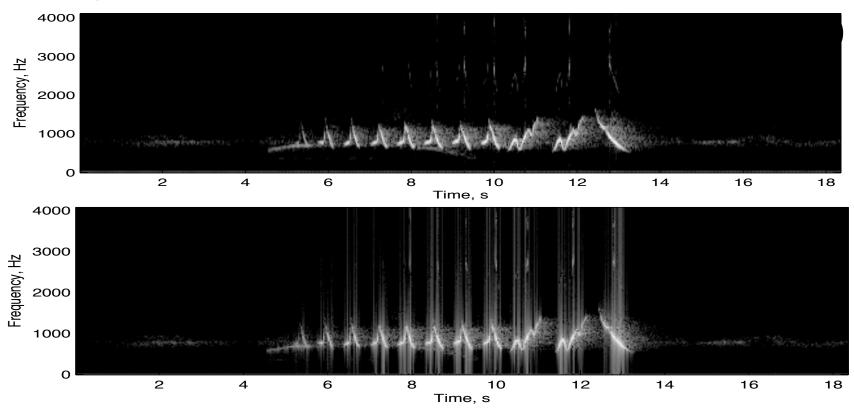
Applications

Time Frequency Analysis

Spectrogram of Orca whale

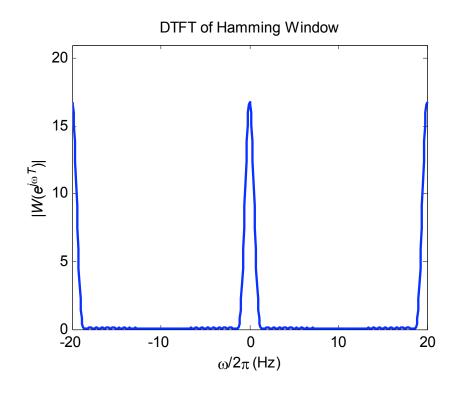


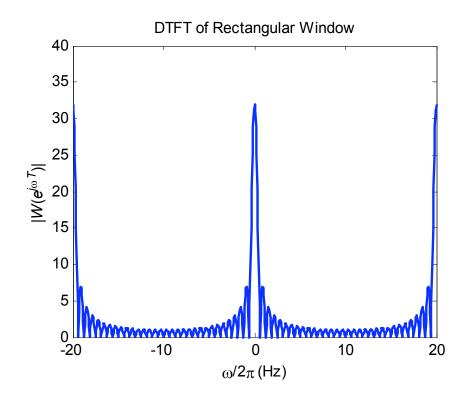
Spectrogram

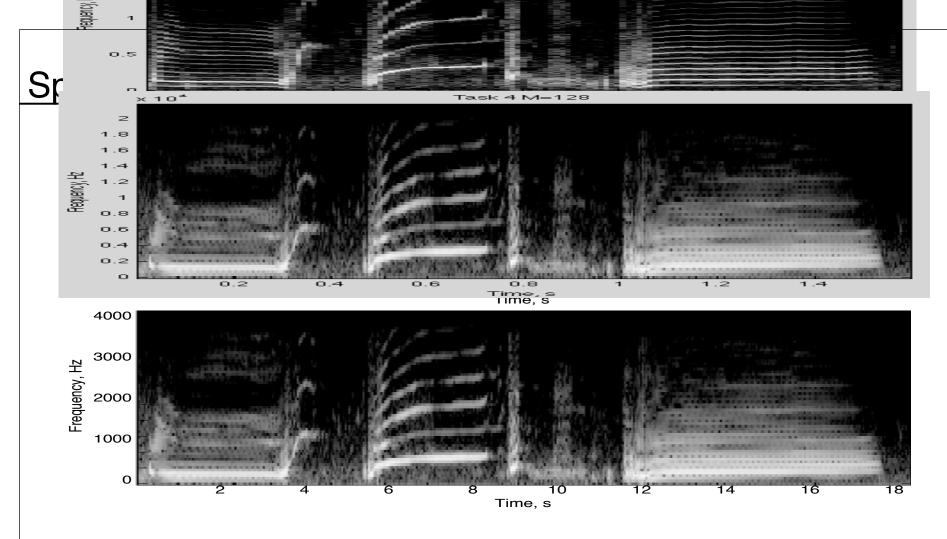


- What is the difference between the spectrograms?
 - a) Window size B<A
- c) Window type is different
- b) Window size B>A d) (A) uses overlapping window

Sidelobes of Hann vs rectangular window



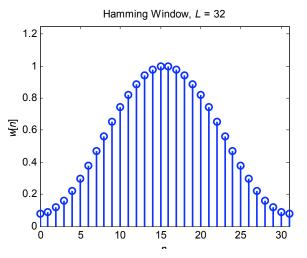




- What is the difference between the spectrograms?
 - a) Window size B<A
- c) Window type is different
- b) Window size B>A d) (A) uses overlapping window

Spectrogram

Hamming Window, L = 32



DTFT of Hamming Window

20

15

15

-20

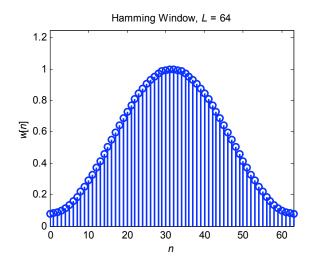
-10

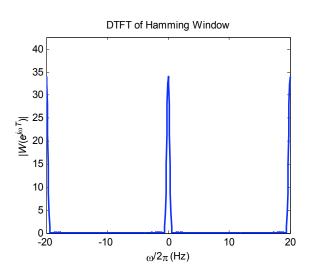
0

10

20

Hamming Window, L = 64



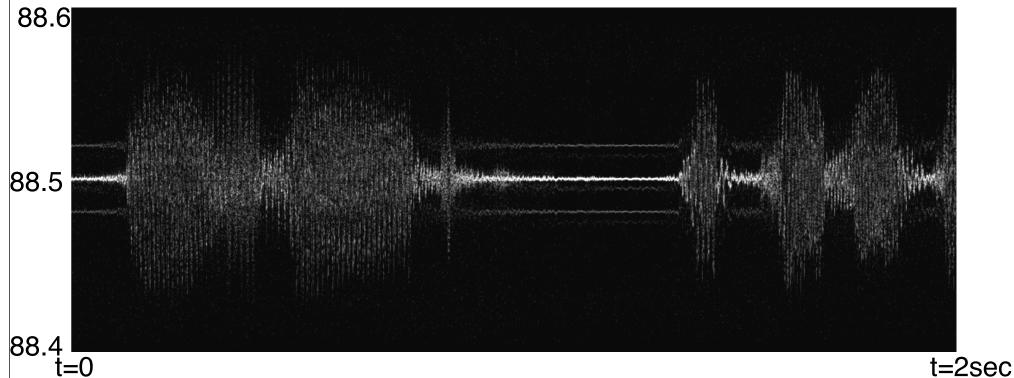


Spectrogram of FM

$$y_c(t) = A \cos \left(2\pi f_c t + 2\pi \Delta f \int_0^t x(\tau) d\tau\right)$$

$$y[n] = y(nT) = A \exp\left(j2\pi\Delta f \int_0^{nT} x(\tau)d\tau\right)$$

Spectrogram of FM radio

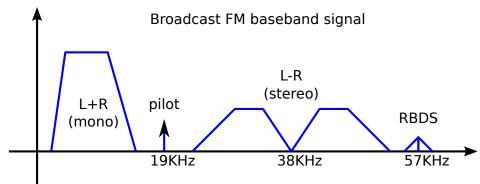


M. Lustig, EECS UC Berkeley

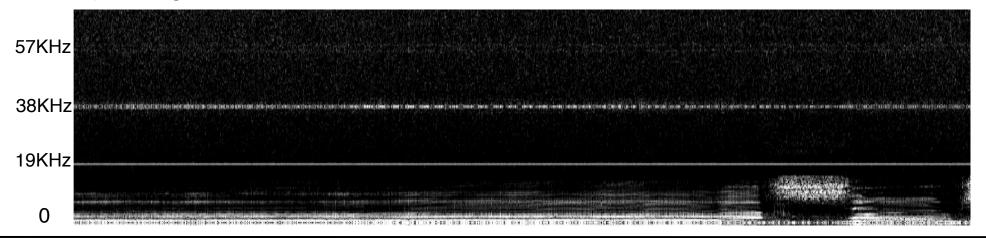
Spectrogram of FM radio Baseband

$$y[n] = y(nT) = A \exp\left(j2\pi\Delta f \int_0^{nT} x(\tau)d\tau\right)$$

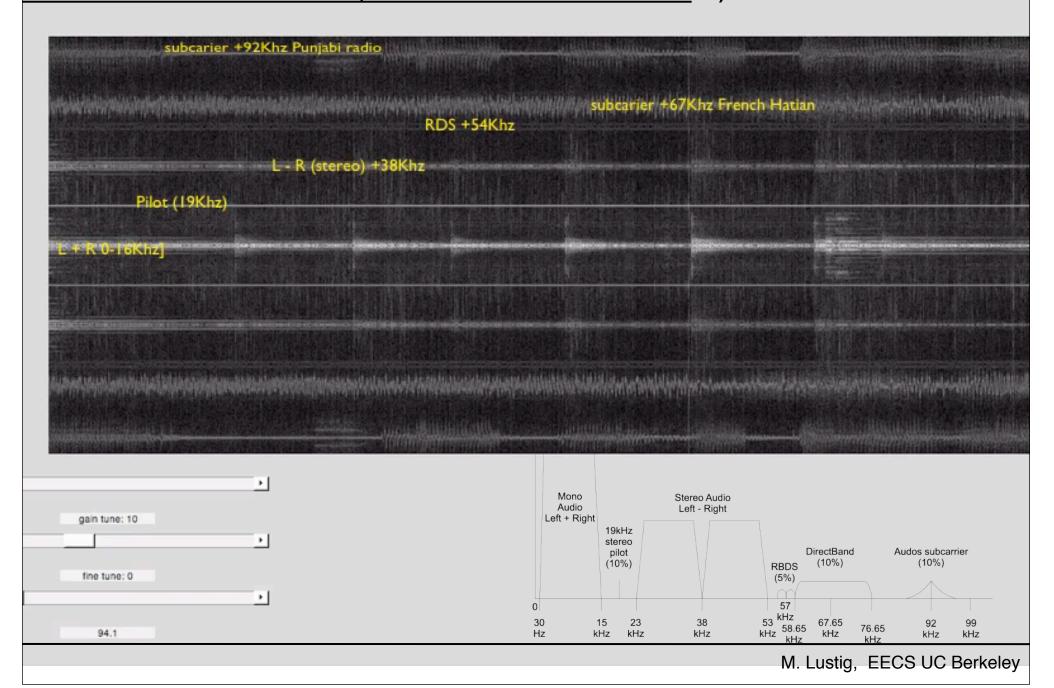
$$x(t) = \underbrace{(L+R)}_{\text{mono}} + \underbrace{0.1 \cdot \cos(2\pi f_p t)}_{\text{pilot}} + \underbrace{(L-R)\cos(2\pi (2f_p)t)}_{\text{stereo}} + \underbrace{0.05 \cdot \text{RBDS}(t)\cos(2\pi (3f_p)t)}_{\text{digital RBDS}}.$$



Spectrogram of **Demodulated** FM radio (Adele on 96.5 MHz)



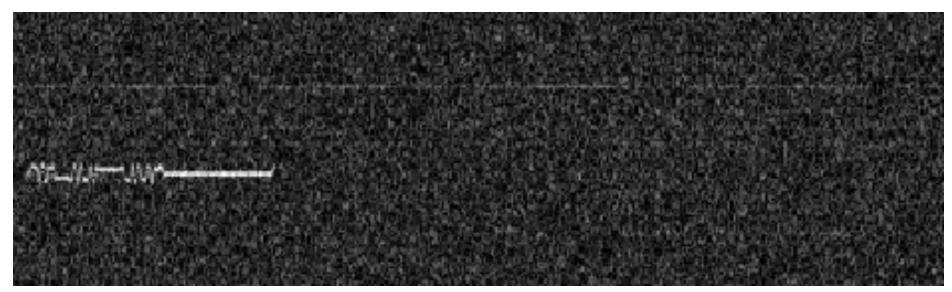
Subcarrier FM radio (Hidden Radio Stations)



Applications

Time Frequency Analysis

Spectrogram of digital communications - Frequency Shift Keying



t=0 t=1sec

STFT Reconstruction

$$x[rR + m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n, k]e^{j2\pi km/N}$$

For non-overlapping windows, R=L:

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$

$$rL \le n \le (r+1)R - 1$$

What is the problem?

STFT Reconstruction

$$x[rR + m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n, k]e^{j2\pi km/N}$$

For non-overlapping windows, R=L:

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$

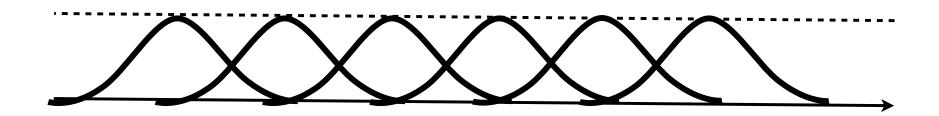
$$rL \le n \le (r+1)R - 1$$

 For stable reconstruction must overlap window 50% (at least)

STFT Reconstruction

 For stable reconstruction must overlap window 50% (at least)

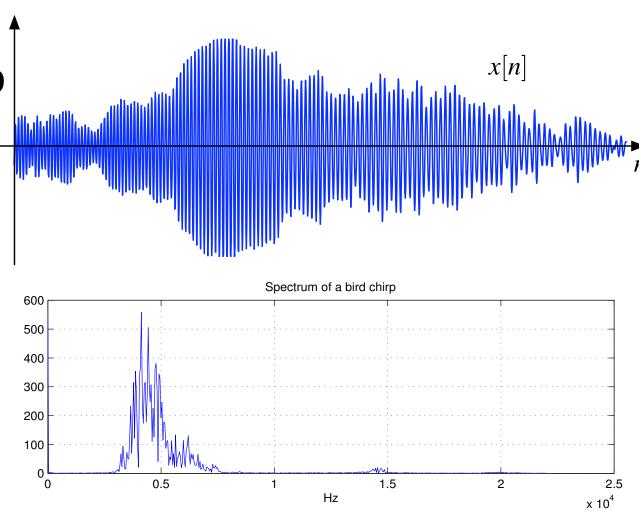
 For Hann, Bartlett reconstruct with overlap and add. No division!



Applications

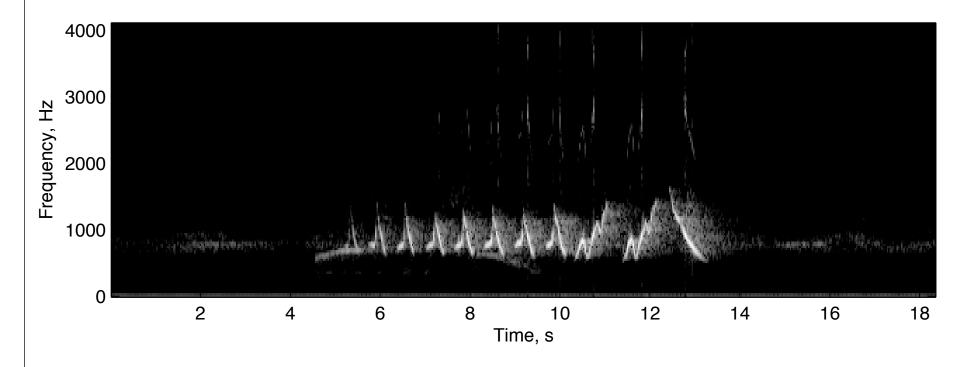
Noise removal

Recall bird chirp



Application

Denoising of Sparse spectrograms



 Spectrum is sparse! can implement adaptive filter, or just threshold!

Limitations of Discrete STFT

Need overlapping ⇒ Not orthogonal

Computationally intensive O(MN log N)

Same size Heisenberg boxes

From STFT to Wavelets

- Basic Idea:
 - -low-freq changes slowly fast tracking unimportant
 - -Fast tracking of high-freq is important in many apps.
 - -Must adapt Heisenberg box to frequency

Back to continuous time for a bit.....