

Announcements

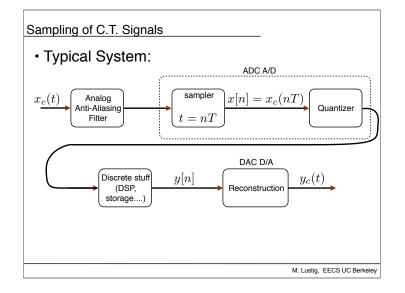
- Ham exam Th 3/12 7-10+,The Woz Soda hall
- · Lab:
 - -Who is having trouble?

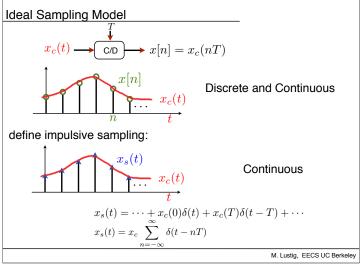
M. Lustig, EECS UC Berkeley

Sampling of Continuous Time Signals (Ch.4)

- Sampling:
 - Conversion from C.T (not quantized) into D.T (usually quantized)
- Reconstruction
 - -D.T (quantized) to C.T
- · Why?
 - -Digital storage (audio, images, videos)
 - -Digital communications (fiber optics, cellular...)
 - -DSP (compression, correction, restoration)
 - -Digital synthesis (speech, graphics)
 - Learning

M. Lustig, EECS UC Berkeley





Ideal Sampling Model

$$x_s(t) = x_c \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

· Not physical: used for modeling & derivations

$$x[n] \leftrightarrow x_s(t) \leftrightarrow x_c(t)$$

How is x[n] related to x_s(t) in freq. domain?

M. Lustig, EECS UC Berkeley

Frequency Domain Analysis

• How is x[n] related to x_s(t) in the Freq. Domain?

$$x_s(t) \text{ :c.t} \qquad \qquad X_s(j\Omega) = \sum_n x_c(nT) e^{-j\Omega nT}$$

$$x[n] \text{ :d.t} \qquad \qquad X(e^{j\omega}) = \sum_n x[n] e^{-j\omega n} \qquad \omega = \Omega T$$

$$X(e^{j\omega}) = X_s(j\Omega)|_{\Omega=\omega/T}$$
 $X_s(j\Omega) = X(e^{j\omega})|_{\omega=\Omega T}$

M. Lustig, EECS UC Berkeley

Frequency Domain Analysis

• How is $x_s(t)$ related to $x_c(t)$?

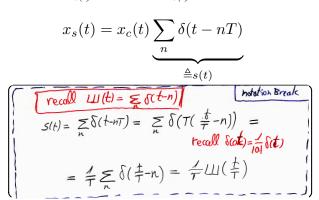
$$x_s(t) = x_c(t) \underbrace{\sum_{n} \delta(t - nT)}_{\triangleq s(t)}$$

M. Lustig, EECS UC Berkeley

Frequency Domain Analysis

• How is $x_s(t)$ related to $x_c(t)$?

$$x_s(t) = x_c(t) \underbrace{\sum_{n \in S(t)} \delta(t - nT)}_{\triangleq s(t)}$$



M. Lustig, EECS UC Berkeley

Frequency Domain Analysis

• How is $x_s(t)$ related to $x_c(t)$?

$$x_s(t) = x_c(t) \underbrace{\sum_n \delta(t - nT)}_{\triangleq s(t)}$$

M. Lustig, EECS UC Berkeley

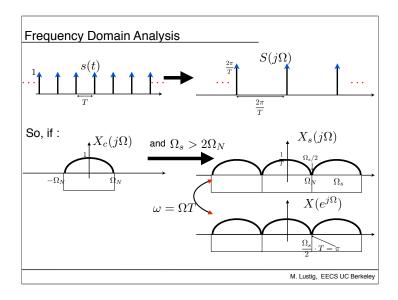
Frequency Domain Analysis

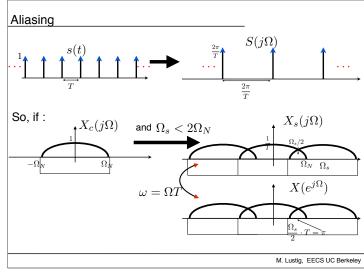
$$X_s(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * S(j\Omega)$$

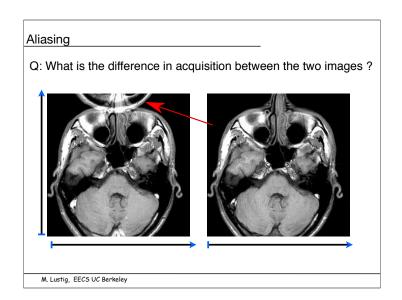
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - \Omega_s)) \quad | \quad \Omega_s = \frac{2\pi}{T}$$

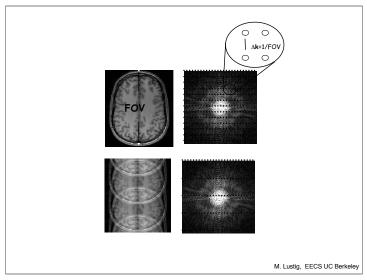
X_s is replication of X_c!

M. Lustig, EECS UC Berkeley









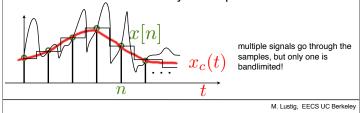
Reconstruction of Bandlimited Signals

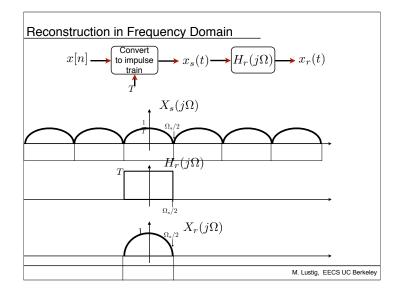
• Nyquist Sampling Thm: suppose $x_c(t)$ is bandlimited

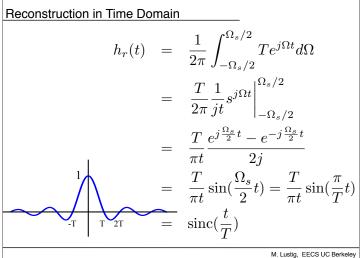
$$X_c(j\Omega) = 0 \ \forall \ |\Omega| \ge \Omega_N$$

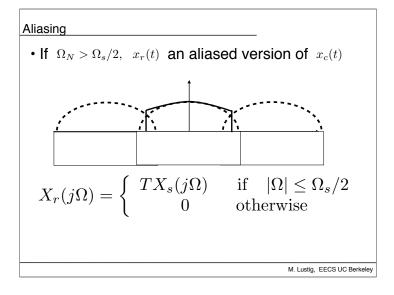
if $\ \Omega_s \geq 2\Omega_N$, then $x_c(t)$ can be uniquely determined from its samples $\ x[n] = x_c(nT)$

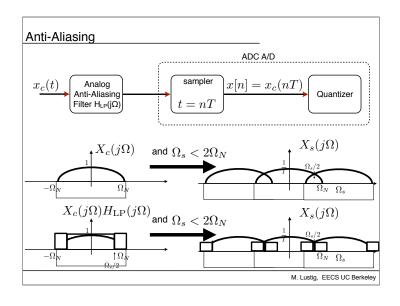
• Bandlimitedness is the key to uniqueness

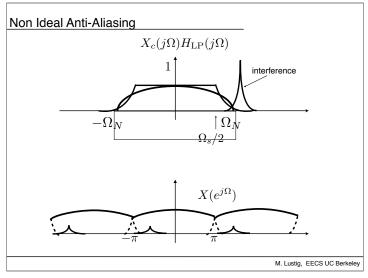












SDR non-perfect anti-Aliasing Demo		
	M. Lustig,	EECS UC Berkeley