
M. Lustig, EECS UC Berkeley

EE123
Digital Signal Processing

Lecture 19
Practical ADC/DAC

Xc(j⌦)HLP(j⌦)

M. Lustig, EECS UC Berkeley

Ideal Anti-Aliasing

xc(t)

t = nT

x[n] = xc(nT)
Quantizer

sampler

ADC A/D

⌦s < 2⌦N
Xc(j⌦)

�⌦N ⌦N

Xs(j⌦)
1

⌦N ⌦s

⌦s/2

and
1

T

Analog
Anti-Aliasing
Filter HLP(jΩ)

⌦s < 2⌦N

�⌦N ⌦N

Xs(j⌦)
1

⌦N ⌦s

⌦s/2

and
1

T

⌦s/2

Xc(j⌦)HLP(j⌦)

M. Lustig, EECS UC Berkeley

Non Ideal Anti-Aliasing

�⌦N ⌦N

1

⌦s/2

interference

• Problem: Hard to implement sharp analog filter
• Tradeoff:

–Crop part of the signal
–Suffer from noise and interference (See lab II !)

noise

T

T =
1

M
(
⇡

⌦N
) ⇡

M

M. Lustig, EECS UC Berkeley

Oversampled ADC

xc(t) x[n] = xc(nT)
Quantizer

C/D

ADC A/D

Sharp Analog
Anti-Aliasing
Filter HLP(jΩ)

xc(t)
Quantizer

C/D

Oversampled ADC A/D

Simple Analog
Anti-Aliasing

Filter

Sharp Digital
Anti-aliasing

filter ↓M

�⌦N ⌦N

1

⌦s/2
M. Lustig, EECS UC Berkeley

Oversampled ADC

Xc(j⌦)HLP(j⌦)

�⌦N ⌦N

1

⌦s/2

⇡�⇡

X̂(ej!)
1/T

M. Lustig, EECS UC Berkeley

Oversampled ADC

�⌦N ⌦N

1

⌦s/2

aliased noise

Xc(j⌦)HLP(j⌦)

after oversampling x2

⇡�⇡

X̂(ej!)
1/T

1/Td

X̂d(e
j!) Td = MT

M. Lustig, EECS UC Berkeley

Oversampled ADC

aliased noise

after oversampling x2

⇡�⇡

after digital LP and decimation

x̂[n]xc(t)

2Xm

�

M. Lustig, EECS UC Berkeley

Sampling and Quantization

T
x[n] = xc(nT)

Quantizer
C/D

ADC A/D

M. Lustig, EECS UC Berkeley

Sampling and Quantization

• for 2’s complement with B+1 bits �1 x̂B [n] < 1

� =
2Xm

2B+1
=

Xm

2B

x̂[n] = Xmx̂B [n]

2Xm

�

x̂[n] = x[n] + e[n]

e[n]

��/2 e[n] < �/2

(�Xm ��/2) < x[n] (Xm ��/2)

M. Lustig, EECS UC Berkeley

Quantization Error

• Model quantization error as noise

Quantizer
x[n]

+
x[n]

x̂[n]

• In that case:

• Assumptions:
–Model e[n] as a sample sequence of a stationary random

process
– e[n] is not correlated with x[n], e.g., E e[n] x[n] = 0

– e[n] not correlated with e[m], e.g., E e[n] x[m] = 0 | m≠n
(white noise)

– e[n] ~ U[-Δ/2, Δ/2]

• Result:
– Variance is: , or since
– Assumptions work well for signals that change rapidly, are

not clipped and for small Δ

M. Lustig, EECS UC Berkeley

Noise Model for Quantization Error

�2
e =

�2

12
�2
e =

2�2BX2
m

12 � = 2�BXm

M. Lustig, EECS UC Berkeley

Quantization Noise
Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer.
(c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence
for 8-bit quantization of the signal in (a).

• For uniform B+1 bits quantizer:

SNR

Q

= 6.02B + 10.8� 20 log10

✓
X

m

�
x

◆

M. Lustig, EECS UC Berkeley

SNR of Quantization Noise

�2
e =

2�2BX2
m

12

SNR
Q

= 10 log10

✓
�2
x

�2
e

◆

= 10 log10

✓
12 · 22B�2

x

X2
m

◆

rms of amp

Quantizer range

SNR

Q

= 6.02B + 10.8� 20 log10

✓
X

m

�
x

◆

M. Lustig, EECS UC Berkeley

SNR of Quantization Noise

rms of amp

Quantizer range

• Improvement of 6dB with every bit
• The range of the quantization must be

adapted to the rms amplitude of the signal
– Tradeoff between clipping and noise!
– Often use pre-amp
– Sometimes use analog auto gain controller (AGC)
– If σx = Xm/4 then SNRQ ≈ 6B - 1.25dB

so SNR of 90-96 dB requires 16-bits (audio)

xc(t) x[n] x̂[n] = x[n] + e[n]

x̂d[n] = xd[n] + ed[n]

T =
⇡

⌦NM

M. Lustig, EECS UC Berkeley

Quantization noise in Oversampled ADC

e[n]

+ LPF
ωc=π/M

C/D ↓M

x̂d[n] = xd[n] + ed[n]

X̂(ej!)

· · · · · ·

⇡�⇡

ΩNM/π

π/M

σe2

⌦N ⌦

Xc(j⌦)
1

X̂d(e
j!)

· · ·· · ·

⇡�⇡

σe2/M
ΩN/π

• Energy of xd[n] equals energy of x[n]
– No filtering of signal!

• Noise std is reduced by factor of M

• For doubling of M we get 3dB improvement,
which is the same as 1/2 a bit of accuracy
– With oversampling of 16 with 8bit ADC we get

the same quantization noise as 10bit ADC!
M. Lustig, EECS UC Berkeley

Quantization noise in Oversampled ADC

SNR

Q

= 6.02B + 10.8� 20 log10

✓
X

m

�
x

◆
+ 10 log10 M

xr(t) =
1X

n=�1
x[n]sinc

✓
t� nT

T

◆
x[n] = x(t)|t=nT

M. Lustig, EECS UC Berkeley

Practical ADC (Ch. 4.8.4)

• Scaled train of sinc pulses
• Difficult to generate sinc ⇒ Too long!

sinc pulse
generator

D.T C.T

xr(t)

=
X

x[n]h0(t� nT)

H0(j⌦) = Te�j⌦T
2 sinc(

⌦

⌦s
)

M. Lustig, EECS UC Berkeley

Practical ADC

• h0(t) is finite length pulse ⇒ easy to implement

• For example: zero-order hold

x[n] = x(t)|t=nT

Interp. Filter
h0(t)⇔H0(jΩ)

D.T Recon. Filter
hr(t)⇔Hr(jΩ)

C.T analog processing

T

1

4T

x0(t)

x0(t) =
1X

n=�1
x[n]h0(t� nT) = x0(t) ⇤ xs(t)

X(j⌦) = H0(j⌦)Xs(j⌦)

= H0(j⌦)
1

T

1X

k=�1
X(j(⌦� k⌦s))

M. Lustig, EECS UC Berkeley

Practical ADC

· · ·

Zero-Order-Hold interpolation

0 T 2T 3T 5T

Taking a FT:

Xr(j⌦) = Hr(j⌦) ·H0(j⌦) ·Xs(j⌦)

= Hr(j⌦)| {z } ·Te
�j⌦T

2 sinc(
⌦

⌦s
)

| {z }
· 1
T

1X

k=�1
X(j(⌦� k⌦s))

| {z }

M. Lustig, EECS UC Berkeley

Practical ADC
Output of the reconstruction filter:

recon
filter Shifted copies from

sampling

Xs(j⌦)
... ...

H0(j⌦)

from zero-order
hold

Hr(j⌦)

Xr(j⌦) = Hr(j⌦) ·H0(j⌦) ·Xs(j⌦)

= Hr(j⌦)| {z } ·Te
�j⌦T

2 sinc(
⌦

⌦s
)

| {z }
· 1
T

1X

k=�1
X(j(⌦� k⌦s))

| {z }

Xs(j⌦)

Xs(j⌦)HLP(j⌦)

M. Lustig, EECS UC Berkeley

 Practical ADC

......

......

Ideally:

Xs(j⌦)

Xs(j⌦)H0(j⌦)

M. Lustig, EECS UC Berkeley

Practical ADC

......

......

Practically:

Xs(j⌦)

Xs(j⌦)H0(j⌦)

M. Lustig, EECS UC Berkeley

Practical ADC

......

......

Practically:

= *

Xs(j⌦)

Xs(j⌦)H0(j⌦)Hr(j⌦)

M. Lustig, EECS UC Berkeley

Practical ADC

......

......

Practically:

Xs(j⌦)

Xs(j⌦)H0(j⌦)Hr(j⌦)

M. Lustig, EECS UC Berkeley

Easier Implementation with Digital upsampling

......

......

Practically:

xe[n]

⇡/L
x[n]

LPF
gain=L↑L

M. Lustig, EECS UC Berkeley

Easier Implementation with Digital upsampling

easier implementing
with analog components

Need analog components
made of Nonobtainium

