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Non Ideal Anti-Aliasing
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interference

• Problem: Hard to implement sharp analog filter
• Tradeoff:

–Crop part of the signal
–Suffer from noise and interference (See lab II !)

noise
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Oversampled ADC
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Oversampled ADC
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Oversampled ADC
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Oversampled ADC

aliased noise

after oversampling x2
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after digital LP and decimation
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Sampling and Quantization

T
x[n] = xc(nT )
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Sampling and Quantization

• for 2’s complement with B+1 bits �1  x̂B [n] < 1
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Quantization Error 

• Model quantization error as noise

Quantizer
x[n]

+
x[n]
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• In that case:



• Assumptions:
–Model e[n] as a sample sequence  of a stationary random 

process
– e[n] is not correlated with x[n], e.g., E e[n] x[n] = 0

– e[n] not correlated with e[m], e.g., E e[n] x[m] = 0  | m≠n 
(white noise)

– e[n] ~ U[-Δ/2, Δ/2]

• Result:
– Variance is:                , or                          since
– Assumptions work well for signals that change rapidly, are 

not clipped and for small Δ
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Noise Model for Quantization Error
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Quantization Noise
Figure 4.57 (continued)  (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. 
(c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence 
for 8-bit quantization of the signal in (a).



• For uniform B+1 bits quantizer:
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SNR of Quantization Noise
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SNR of Quantization Noise

rms of amp

Quantizer range

• Improvement of 6dB with every bit
• The range of the quantization must be 

adapted to the rms amplitude of the signal
– Tradeoff between clipping and noise!
– Often use pre-amp
– Sometimes use analog auto gain controller (AGC)
– If σx = Xm/4  then  SNRQ ≈ 6B - 1.25dB

so SNR of 90-96 dB requires 16-bits (audio)
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Quantization noise in Oversampled ADC

e[n]

+ LPF
ωc=π/M

C/D ↓M

x̂d[n] = xd[n] + ed[n]

X̂(ej!)

· · · · · ·

⇡�⇡

ΩNM/π

π/M

σe2

⌦N ⌦

Xc(j⌦)
1

X̂d(e
j!)

· · ·· · ·

⇡�⇡

σe2/M
ΩN/π



• Energy of xd[n] equals energy of x[n] 
– No filtering of signal!

• Noise std is reduced by factor of M

• For doubling of M we get 3dB improvement, 
which is the same as 1/2 a bit of accuracy
– With oversampling of 16 with 8bit ADC we get 

the same quantization noise as 10bit ADC!
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Quantization noise in Oversampled ADC
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Practical ADC (Ch. 4.8.4)

• Scaled train of sinc pulses
• Difficult to generate sinc ⇒ Too long!

sinc pulse
generator

D.T C.T
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Practical ADC

• h0(t) is finite length pulse ⇒ easy to implement

• For example: zero-order hold

x[n] = x(t)|t=nT

Interp. Filter
h0(t)⇔H0(jΩ)

D.T Recon. Filter
hr(t)⇔Hr(jΩ)

C.T analog processing

T
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Practical ADC

· · ·

Zero-Order-Hold interpolation

0 T 2T 3T 5T

Taking a FT:
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Practical ADC
Output of the reconstruction filter:
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 Practical ADC

......

......

Ideally:
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Practical ADC
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Practically:
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Practical ADC
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Practically:
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Practical ADC
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Practically:



Xs(j⌦)

Xs(j⌦)H0(j⌦)Hr(j⌦)

M. Lustig,  EECS UC Berkeley

Easier Implementation with Digital upsampling

......

......

Practically:

xe[n]
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LPF
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Easier Implementation with Digital upsampling

easier implementing
with analog components

Need analog components
made of Nonobtainium


