

Lecture 24
Compressed Sensing III

RADIOS

- https://inst.eecs.berkeley.edu/~ee123/ sp15/radio.html
- Interfaces and radios on Wednesday --please come to pick up

 Midterm II this Friday -- same deal - open everything covers everything including 2D

Traditional Sensing

Arbitrary sensing

- x∈^{ℜN} is a signal
- Make N linear measurements

- $x \in \Re^N$ is a K-sparse signal (K<<N)
- Make M (K<M<<N) incoherent linear projections

• Given $y = \Phi x$ find x

Under-determined

• But there's hope, x is sparse!

• Given $y = \Phi x$ find x

Under-determined

• But there's hope, x is sparse!

• Given $y = \Phi x$ find x

Under-determined

• But there's hope, x is sparse!

minimize $||x||_2$

s.t. $y = \Phi x$

WRONG!

• Given $y = \Phi x$ find x

Under-determined

• But there's hope, x is sparse!

minimize $||x||_0$

s.t.
$$y = \Phi x$$

HARD!

• Given $y = \Phi x$ find x

Under-determined

• But there's hope, x is sparse!

minimize $||x||_1$

s.t. $y = \Phi x$

need M ≈ K log(N) <<N Solved by linear-programming

Geometric Interpretation

minimum $||x||_2$

$$\left[\begin{array}{c} 0\\3\\0\end{array}\right] \left[\begin{array}{c} 0\\0\\1\end{array}\right] \left[\begin{array}{c} 1\\0\\0\end{array}\right]$$

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} [y_1] \end{array}\right]$$

A non-linear sampling theorem

- $f \in C^N$ supported on a set Ω in Fourier
- Shannon:
 - $-\Omega$ is known connected set, size B
 - Exact recovery from B equispaced time samples
 - Linear reconstruction by sinc interpolation
- Non-linear sampling theorem
 - $-\Omega$ is an arbitrary, unknown set of size B
 - Exact recovery from ~ B logN (almost) arbitrary placed samples
 - Nonlinear reconstruction by convex programming

Can such sensing system exist in practice?

Fourier matrix

Can such sensing system exist in practice?

Fourier matrix

Can such sensing system exist in practice?

Fourier matrix

Can such sensing system exist in practice?

Randomly undersampled Fourier is incoherent

MRI samples in the Fourier domain!

CS UC Berkeley

Nyquist

Recovery

Question!

- · What if this was the signal?
- Would CS still work?

Domains in Compressed Sensing

Acquired Data Compressed Sensing Reconstruction Sparse "denoising"

6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets. x8 acceleration

6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets.

Back to Results

Principles of Magnetic Resonance Imaging EE c225E / BIOE c265

Spring 2016

Shameless Promotion

Other Applications

- Compressive Imaging
- Medical Imaging
- Analog to information conversion
- Biosensing
- Geophysical Data Analysis
- Compressive Radar
- Astronomy
- Communications
- More

Resources

- CS + parallel imaging matlab code, examples
 http://www.eecs.berkeley.edu/~mlustig/software/
- Rice University CS page: papers, tutorials, codes,
 http://www.dsp.ece.rice.edu/cs/
- IEEE Signal Processing Magazine, special issue on compressive sampling 2008;25(2)
- · March 2010 Issue Wired Magazine: "Filling the Blanks"

Igor Caron Blog: http://nuit-blanche.blogspot.com/

Thank you! תודה רבה