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Compressed Sensing |l




RADIOS

» https://inst.eecs.berkeley.edu/~ee123/
sp15/radio.html

» Interfaces and radios on Wednesday --
please come to pick up

» Midterm |l this Friday -- same deal - open
everything covers everything including 2D

M. Lustig, EECS UC Berkeley




Traditional Sensing

xERN is a signal

 Make N linear measurements

Arbitrary sensing

sensing matrix

M. Lustig, EECS UC Berkeley




Compressed SenSing (Candes, Romber, Tao 2006; Donoho 2006)

xeENN is a K-sparse signal (K<<N)
» Make M (K<M<<N) incoherent linear projections
y d

A "good" compressed sensing matrix is incoherent
i.e, approximately orthogonal

Incoherency can preserve information

M. Lustig, EECS UC Berkeley




CS recovery

* Giveny = dx o
Hal Under-determine

- But there’s hope, x is sparse!

M. Lustig, EECS UC Berkeley




CS recovery

* Giveny = Ox .
fnd X Under-determined

- But there’s hope, x is sparse!
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CS recovery

* Giveny = Ox .
fnd X Under-determined

- But there’s hope, x is sparse!

minimize ||X||,

S.l. y = ®x

WRONG!

M. Lustig, EECS UC Berkeley




CS recovery

* Giveny = Ox .
fnd X Under-determined

- But there’s hope, x is sparse!

minimize ||x||,

S.l. y = ®x

HARD!

M. Lustig, EECS UC Berkeley




CS recovery

* Giveny = Ox .
fnd X Under-determined

- But there’s hope, x is sparse!

minimize ||x||

S.l. y = ®X

need M = K log(N) <<N
Solved by linear-programming

M. Lustig, EECS UC Berkeley




Geometric Interpretation

domain of sparse signals

minimum ||x||1

minimum |[x||2

M. Lustig, EECS UC Berkeley




A non-linear sampling theorem

 f&CN supported on a set Q in Fourier

« Shannon:
— Q is known connected set, size B

— Exact recovery from B equispaced time samples
— Linear reconstruction by sinc interpolation

* Non-linear sampling theorem
— Q is an arbitrary, unknown set of size B
— Exact recovery from ~ B logN (almost) arbitrary placed samples
— Nonlinear reconstruction by convex programming

M. Lustig, EECS UC Berkeley




Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix

M. Lustig, EECS UC Berkeley




Practicality of CS

 Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS
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Fourier matrix
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Practicality of CS

 Can such sensing system exist in practice?

- Randomly undersampled Fourier is incoherent

MRI samples in the Fourier domain!
P* o

U

M. Lustig, EECS UC Berkeley




COMPRESSED SENSING KRECLPE

SAMP
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Intuitive example of CS

0000000800080 00e000e000e

— g 2=

equispaced — OO0@OO0OO00O000@000®000® sub-Nyquist

ARG




Intuitive example of CS

0000000800080 00e000e000e

L = g =

1 sub-Nyquist

Ambiguity




Intuitive example of CS

0000000080000 00008e00e00

—

random —  O@O@®O000@000@00000@00@00 sub-Nyquist

‘M/ NW




RANDOM SUBSAMPLING v

FIRST Ve

OK, 0N THE

IVi. LUSUY, EECS UC Berkeley




Intuitive example of CS

0000000080000 00008e00e00

—

1 sub-Nyquist

Looks like
“random noise”

L




Intuitive example of CS

0000000080000 00008e00e00

—

1 sub-Nyquist

But it's not
noisel!

\




RANDOM SUBSAMPLING

bFT
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RANDOM SUBSAMPLING
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Intuitive example of CS

0000000080000 00008e00e00

J\LL FFT
B— E—

Recovery

4—?4—
|

Example inspired by Donoho et. Al, 2007




RANDOM SUBSAMPLING

PFT

> Berkeley




Questionl!

* What if this was the signal?
* Would CS still work?

random —  O@O@OO000@O000@00000@00000 sub-Nyquist

8




Domains in Compressed Sensing

Not Sparsel

— Sampli.ng

Domain

Spar'sel incoherent

Sparse
Domain




Sampling
Domain
Not Sparse!

Domain
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Acquired Data

Compressed Sensing
Reconstruction

Sparse “denoising”

e e G




~Acquired Data

Compressed Sensing
Reconstruction

— | Tutorial & code available at http://www.mlustig.com




6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered
by CS with L1-wavelets. x8 acceleration

Linear Reconstruction Compressed sensing

portal vein
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6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered

by CS with L1-wavelets.

Linear Reconstruction

not seen

Compressed sensing

portal vein

v

Hepatic vein

é bile duct

ncreatlc duct
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Back to Results

6 year old

8-fold accelerat
16 second scan
0.875 mm in-plar
1.6 slice thick




Principles of

Magnetic Resonance Imaging
EE c225E / BIOE c265

oAk 4 |<
Spring 2016

Shameless Promotion




Other Applications

- Compressive Imaging
* Medical Imaging
» Analog to information conversion

* Biosensing

* Geophysical Data Analysis

- Compressive Radar
* Astronomy
- Communications




Resources
* CS + parallel imaging matlab code, examples

http://www.eecs.berkeley.edu/~mlustig/software/

* Rice University CS page: papers, tutorials, codes, ...
http://www.dsp.ece.rice.edu/cs/

+ IEEE Signal Processing Magazine, special issue on compressive
sampling 2008;25(2)

* March 2010 Issue Wired Magazine: "Filling the Blanks"

* Igor Caron Blog: http://nuit-blanche.blogspot.com/

Thank youl
11171 11 T10N




