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RADIOS

• https://inst.eecs.berkeley.edu/~ee123/
sp15/radio.html

• Interfaces and radios on Wednesday -- 
please come to pick up

• Midterm II this Friday -- same deal - open 
everything covers everything including 2D
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• x∈ℜN is a signal 
• Make N linear measurements 

N N

Traditional Sensing

xy

=

Φ

sensing matrix

NxN

A “good” sensing matrix is orthogonal

Φ*      Φ    =      I

Arbitrary sensing
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sensing matrix

Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006)

• x∈ℜN is a K-sparse signal (K<<N)
• Make M (K<M<<N) incoherent linear projections

x

=

Φ

MxN
K

sensing matrix

A “good” compressed sensing matrix is incoherent 
i.e, approximately orthogonal

Φ*      Φ    ≈      I

Incoherency can preserve information

M

y
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CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

Under-determined

=

Φ xy
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CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||2 
s.t. y = Φx

 
WRONG!
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CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||0 
s.t. y = Φx

HARD!
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CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||1 
s.t. y = Φx

need M ≈ K log(N) <<N
Solved by linear-programming
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minimum ||x||1 minimum ||x||2

Geometric Interpretation

domain of sparse signals
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A non-linear sampling theorem

• f∈CN supported on a set Ω in Fourier
• Shannon:

– Ω is known connected set, size B
– Exact recovery from B equispaced time samples
– Linear reconstruction by sinc interpolation

• Non-linear sampling theorem
– Ω is an arbitrary, unknown set of size B
– Exact recovery from ~ B logN (almost) arbitrary placed samples
– Nonlinear reconstruction by convex programming
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Practicality of CS

• Can such sensing system exist in practice? 

Fourier matrix
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Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix
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• Can such sensing system exist in practice?

• Randomly undersampled Fourier is incoherent

Φ*    Φ             ≈               I

Practicality of CS

=

•   MRI samples in the Fourier domain!
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Intuitive example of CS Intuitive example of CS

FFT

Nyquistsampling



Intuitive example of CS

FFT

sub-Nyquistequispaced

Intuitive example of CS

FFT

sub-Nyquist

Ambiguity

Intuitive example of CS

FFT

sub-Nyquistrandom
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Intuitive example of CS

FFT

sub-Nyquist
Looks like 

“random noise”

Intuitive example of CS

FFT

sub-Nyquist
But it’s not

noise!
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Intuitive example of CS

FFT

Recovery

Example inspired by Donoho et. Al, 2007
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Question!

• What if this was the signal?
• Would CS still work?

sub-Nyquistrandom sub-Nyquist

Domains in Compressed Sensing

Signal

Sparse
Domain

Sampling
Domain

Not Sparse!

Sparse! incoherent



MRI

Signal

Not Sparse!

Sparse! incoherent

Sampling
DomainSignal

Sparse
Domain

Acquired Data

Sparse “denoising”

Compressed Sensing
Reconstruction

Acquired Data

Sparse “denoising”

Compressed Sensing
Reconstruction

Acquired Data

Sparse “denoising”Undersampled Final Image

Compressed Sensing
Reconstruction

Tutorial & code available at http://www.mlustig.com

6 year old male abdomen. Fine structures (arrows) are buried 
in  noise (artifactual + noise amplification) and are recovered 
by CS with L1-wavelets.  x8 acceleration 

liver

Linear Reconstruction Compressed sensing

portal vein

hepatic vein

6 year old male abdomen. Fine structures (arrows) are buried 
in  noise (artifactual + noise amplification) and are recovered 
by CS with L1-wavelets.   

liver

Linear Reconstruction Compressed sensing

portal vein
not seen

Zoom Zoom

Hepatic vein

bile duct

pancreatic duct



Back to Results
6"year"old
8+fold"acceleration
16"second"scan
0.875"mm"in+plane
1.6"slice"thickness

Principles of 
Magnetic Resonance Imaging

EE c225E / BIOE c265

Shameless Promotion

Spring 2016

Other Applications

• Compressive Imaging
• Medical Imaging
• Analog to information conversion
• Biosensing
• Geophysical Data Analysis
• Compressive Radar
• Astronomy
• Communications
• More ......

Resources
• CS + parallel imaging matlab code, examples 

http://www.eecs.berkeley.edu/~mlustig/software/

• Rice University CS page: papers, tutorials, codes, ….
http://www.dsp.ece.rice.edu/cs/

• IEEE Signal Processing Magazine, special issue on compressive 
sampling 2008;25(2)

• March 2010 Issue Wired Magazine: “Filling the Blanks”

• Igor Caron Blog:  http://nuit-blanche.blogspot.com/

!Thank youהברהדות


