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Compressed Sensing llI
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RADIOS

* https://inst.eecs.berkeley.edu/~ee123/
spi15/radio.html

* Interfaces and radios on Wednesday --
please come to pick up

» Midterm Il this Friday -- same deal - open
everything covers everything including 2D
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Traditional Sensing

Compressed Sensing

(Candes, Romber, Tao 2006; Donoho 2006)

. . Arbitrary sensing . .
+ xRN is a signal + xRN is a K-sparse signal (K<<N)
* Make N linear measurements » Make M (K<M<<N) incoherent linear projections
y P X y D X
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A "good" sensing matrix is orthogonal A “good"” cc})mpressed‘sensing matrix is incoherent
i.e, approximately orthogonal
K
D> o = I > o = I
Incoherency can preserve informaTn
sensing matrix
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CS recovery CS recovery
* Giveny = dx Under-determined * Giveny = O&x Under-determined
find x nder-determine find x nder-determine

» But there’s hope, x is sparse!

y )

I B <

+ But there’s hope, x is sparse!
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CS recovery

* Giveny = dx
find x
+ But there’s hope, x is sparse!

Under-determined

minimize |[x||,

s.t.y = ®X

WRONG!

CS recovery

* Giveny = dx
find x

+ But there’s hope, x is sparse!

Under-determined

minimize |||,

s.t.y = ®X

HARD!

M. Lustig, EECS UC Berkeley

M. Lustig, EECS UC Berkeley

CS recovery

* Giveny = Odx
find x

+ But there’s hope, x is sparse!

Under-determined

minimize ||x||4

s.t.y = Ox

need M = K log(N) <<N
Solved by linear-programming

Geometric Interpretation

domain of sparse signals minimum [|x||+

minimum ||x||2

0 0 1
3 0 0
0 1 0

M. Lustig, EECS UC Berkeley

M. Lustig, EECS UC Berkeley

A non-linear sampling theorem

- feCN supported on a set Q in Fourier
» Shannon:
—Q is known connected set, size B

— Exact recovery from B equispaced time samples
— Linear reconstruction by sinc interpolation

Non-linear sampling theorem
— Q is an arbitrary, unknown set of size B

— Exact recovery from ~ B logN (almost) arbitrary placed samples
— Nonlinear reconstruction by convex programming

Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

+ Can such sensing system exist in practice?

+ Randomly undersampled Fourier is incoherent

+ MRI samples in the Fourier domain!
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Intuitive example of CS

Intuitive example of CS

000000000000000000000000

I I I

sampling—  OO0000000000000000000000  Nyquist

.

¥




Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS

©000000000000000000000000

ﬂ

sub-Nyquist

Intuitive example of CS

©000000000000000000000000




pET

—_

WE
Two

WE can 0
CRicuiATe . /
Ay

/ RANDOM SUBSAMPLING

THE ITeRFERENGE ([
THEY CREA7£ pnp |
Remove 1

pET

RANDOM SUBSAMPLING
..% |

N\ \ \ Y
THRE
INTER FEREYCE b
SHOULD PF LowER \
Wow Anl
) ‘ms,ff rrrs) .
ETs cLeAn ’ .

IT op Ap
PUr TToe/;mfle

Intuitive example of CS
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Example inspired by Donoho et. Al, 2007

bFT

/ RANDOM SUBSAMPLING
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Questionl!

* What if this was the signal?
* Would CS still work?

random —  OO0000000000000000000000 sub-Nyquist
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Domains in Compressed Sensing

Not Sparsel!
. Sampling
Signal
'gna Domain
Sparsel incoherent
Sparse

Domain




MRI

Sampling
Domain
Not Sparse!

Sparse! Arem‘

Sparse
Domain

Compressed Sensing
Reconstruction

Sparse “denoising”

Compressed Sensing
Reconstruction

Sparse “denoising”

Compressed Sensing
Reconstruction

Tutorial & code available at http://www.mlustig.com

6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered
by CS with L1-wavelets. x8 acceleration

Linear Reconstruction Compressed sensing

liver

6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered
by CS with L1-wavelets.

Linear Reconstruction Compressed sensing

liver




Back to Results

6 year old

8-fold accele
16 second sca
0.875 mm in
1.6 slice thicK

Principles of ——

Magnetic Resonance Imaging ~ g &
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Shameless Promotion

Other Applications

+ Compressive Imaging

* Medical Imaging

* Analog to information conversion
+ Biosensing

* Geophysical Data Analysis

+ Compressive Radar

* Astronomy

* Communications

Resources

* CS + parallel imaging matlab code, examples

http://www.eecs.berkeley.edu/~mlustig/software/

* Rice University CS page: papers, tutorials, codes, ....
http://www.dsp.ece.rice.edu/cs/

+ IEEE Signal Processing Magazine, special issue on compressive
sampling 2008;25(2)

+ March 2010 Issue Wired Magazine: “Filling the Blanks"

+ Igor Caron Blog: http://nuit-blanche.blogspot.com/

Thank youl
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