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RADIOS

» https://inst.eecs.berkeley.edu/~ee123/
sp15/radio.html

» Interfaces and radios on Wednesday --
please come to pick up

» Midterm |l this Friday -- same deal - open
everything covers everything including 2D
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Traditional Sensing

Arbitrary sensing

- xRN is a signal
 Make N linear measurements
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A "good" sensing matrix is orthogonal
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Compressed Sensing

(Candes, Romber, Tao 2006; Donoho 2006)

- xRN is a K-sparse signal (K<<N)

- Make M (K<M<<N) incoherent linear projections
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M/ A "good" compressed sensing matrix is incoherent \

i.e, approximately orthogonal
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Incoherency can preserve information
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CS recovery

* Giveny = dx ! o
find x Under-determine

» But there’s hopefx IS sparse!
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CS recovery

* Giveny = Ox _
fnd X Under-determined

 But there’s hope, x is sparse!
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CS recovery

* Giveny = Ox _
fnd X Under-determined

 But there’s hope, x is sparse!

minimize ||X||,

Ss.l. y = ®x

WRONG!
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CS recovery

* Giveny = Ox _
fnd X Under-determined

 But there’s hope, x is sparse!

minimize ||x||,

Ss.l. y = ®x

HARD!
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CS recovery

* Giveny = Ox > .
fnd X Under-determined

» But there’s hope,/x IS sparse!

minimize ||x||

S.l. y = ®X

need M = K log(N) <<N
Solved by linear-programming
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Geometric Interpretation

domain of s

parse signals

minimum ||x||1

minimum ||x||2
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A non-linear sampling theorem

 f&CN supported on a set Q in Fourier

« Shannon:
— Q is known connected set, size B

— Exact recovery from B equispaced time samples
— Linear reconstruction by sinc interpolation

* Non-linear sampling theorem
— Q is an arbitrary, unknown set of size B
— Exact recovery from ~ B logN (almost) arbitrary placed samples
— Nonlinear reconstruction by convex programming
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Practicality of CS

 Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

 Can such sensing system exist in practice?

- Randomly undersampled Fourier is incoherent

MRI samples in the Fourier domain!
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Intuitive example of CS




Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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RANDOM SUBSAMPLING ﬁ

— =)  SPARSE pgy
BUT Thepe Are AGALwv Asing
LETS STy mon€ BURRTE 4 \
WITH TH PEAKs Tazs T ImE
£
FIRST . COUATOF THRE

o

VI LuUduy, EECS UC Berkeley




Intuitive example of CS
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Intuitive example of CS




RANDOM SUBSAMPLING

bFT
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Intuitive example of CS
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Recovery
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Example inspired by Donoho et. Al, 2007




RANDOM SUBSAMPLING

PFT
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Question!

* What if this was the signal?
* Would CS still work?

random —  OO0000000000000000000000 sub-Nyquist
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Domains in Compressed Sensing

Not Sparsel
: Sampling
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Compressed Sensing

Reconstruction
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Compressed Sensing
Reconstruction

Tutorial & code available at http://www.mlustig.com




6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered
by CS with L1-wavelets. x8 acceleration

Linear Reconstruction Compressed sensing

liver




6 year old male abdomen. Fine structures (arrows) are buried
in noise (artifactual + noise amplification) and are recovered
by CS with L1-wavelets.

Linear Reconstruction Compressed sensing




Back to Results

6 year old

8-fold accele
16 second sca
0.875 mm in
1.6 slice thick
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Other Applications

- Compressive Imaging

* Medical Imaging

» Analog to information conversion
* Biosensing

* Geophysical Data Analysis

- Compressive Radar

* Astronomy

- Communications




Resources

* CS + parallel imaging matlab code, examples
http://www.eecs.berkeley.edu/~mlustig/software/

* Rice University CS page: papers, tutorials, codes, ...
http://www.dsp.ece.rice.edu/cs/

+ IEEE Signal Processing Magazine, special issue on compressive
sampling 2008;25(2)

* March 2010 Issue Wired Magazine: "Filling the Blanks"

» Igor Caron Blog: http://nuit-blanche.blogspot.com/
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